Applied Biochemistry and Biotechnology

, Volume 137, Issue 1–12, pp 909–925 | Cite as

Functional stability of a mixed microbial consortium producing PHA from waste carbon sources

  • Erik R. Coats
  • Frank J. Loge
  • William A. Smith
  • David N. Thompson
  • Michael P. Wolcott
Session 5: Bioprocessing And Separations R&D

Abstract

Polyhydroxyalkanoates (PHAs) represent an environmentally effective alternative to synthetic thermoplastics; however, current production practices are not sustainable. In this study, PHA production was accomplished in sequencing batch bioreactors utilizing real wastewaters and mixed microbial consortia from municipal activated sludge as inoculum. Polymer production reached 85, 53, and 10% of the cell dry weight from methanol-enriched pulp and paper mill foul condensate, fermented municipal primary solids, and biodiesel wastewater, respectively. Using denaturing gradient gel electrophoresis of 16S-rDNA from polymerase chain reaction-amplified DNA extracts, distinctly different communities were observed between and within wastewaters following enrichment. Most importantly, functional stability was maintained despite differing and contrasting microbial populations.

Index Entries

Activated sludge denaturing gradient gel electrophoresis polyhydroxyalkanoates wastewater primary solids fermentate foul condensate environmental biotechnology 

References

  1. 1.
    Rittmann, B. E., Hausner, M., Löffler, F., et al. (2006), Environ. Sci. Technol. 40, 1096–1103.Google Scholar
  2. 2.
    Fuhs, G. W. and Chen, M. (1975), Microbial. Ecol. 2, 119–138.CrossRefGoogle Scholar
  3. 3.
    Wagner, M. and Loy, A. (2002), Curr. Opin. Biotechnol. 13, 218–227.CrossRefGoogle Scholar
  4. 4.
    Kaewpipat, K. and Grady, C. P. L., Jr. (2002), Water Sci. Technol. 46, 19–27.Google Scholar
  5. 5.
    Stamper, D. M., Walch, M., and Jacobs, R. N. (2003), Appl. Environ. Microbiol. 69, 852–860.CrossRefGoogle Scholar
  6. 6.
    Peterson, G., Allen, C. R., and Holling, C. S. (1998), Ecosystems 1, 6–18.CrossRefGoogle Scholar
  7. 7.
    Lee, S. Y. (1996), Trends Biotechnol. 14, 431–438.CrossRefGoogle Scholar
  8. 8.
    Dionisi, D., Majone, M., Papa, V., and Beccari, M. (2004), Biotechnol. Bioeng. 85, 569–579.CrossRefGoogle Scholar
  9. 9.
    Madison, L. L. and Huisman, G. W. (1999), Microbiol. Mol. Biol. Rev. 63, 21–53.Google Scholar
  10. 10.
    Lemoigne, M. (1926), Bull. Soc. Chem. Biol. (Paris), 8, 770–782.Google Scholar
  11. 11.
    Braunegg, G., Lefebvre, G., and Genser, K. (2003), J. Biotechnol. 65, 127–161.CrossRefGoogle Scholar
  12. 12.
    Gerngross, T. U. (1999), Nat. Biotechnol. 17, 541–544.CrossRefGoogle Scholar
  13. 13.
    Scott, G. (2000), Polym. Degrad. Stabil. 68, 1–7.CrossRefGoogle Scholar
  14. 14.
    Carucci, A., Dionisi, D., Majone, M., Rolle, E., and Smurra, P. (2001), Water Res. 35, 3833–3844.CrossRefGoogle Scholar
  15. 15.
    Beun, J. J., Dircks, K., Van Loosdrecht, M. C. M., and Heijnen, J. J. (2002), Water Res. 36, 1167–1180.CrossRefGoogle Scholar
  16. 16.
    Dionisi, D., Renzi, V., Majone, M., Beccari, M., and Ramadori, R. (2004), Water Res. 38, 2196–2206.CrossRefGoogle Scholar
  17. 17.
    Comeau, Y., Hall, K. J., Hancock, R. E. W., and Oldham, W. K. (1986), Water Res. 20, 1511–1521.CrossRefGoogle Scholar
  18. 18.
    Mino, T., Arun, V., Tsuzuki, Y., and Matsuo, T. (1987), In: Biological Phosphate Removal From Wastewaters, vol. 4, Ramador, R. (ed.), Pergamon: Oxford, pp. 27–38.Google Scholar
  19. 19.
    Randall, A. A. and Liu, Y.-H. (2002), Water Res. 36, 3473–3478.CrossRefGoogle Scholar
  20. 20.
    Eaton, A. D., Clesceri, L. S., Greenberg, A. E. (1995), Standard Methods for the Examination of Water and Wastewater; 19th ed., APHA: Washington, DC.Google Scholar
  21. 21.
    Braunegg, G., Sonnleitner, B., and Lafferty, R. M. (1978), Eur. J. Appl. Microbiol. 6, 29–37.CrossRefGoogle Scholar
  22. 22.
    Ishii, K., Fukui, M., and Takii, S. (2000), J. Appl. Microbiol. 89, 768–777.CrossRefGoogle Scholar
  23. 23.
    Muyzer, G. and Smalla, K. (1998), Antonie van Leeuwenhoek. 73, 127–141.CrossRefGoogle Scholar
  24. 24.
    Slade, A. H., Nicol, C. M., and Grigsby, J. (1999), Water Sci. Technol. 40, 77–84.CrossRefGoogle Scholar
  25. 25.
    Yamane, T. (1993), Biotechnol. Bioeng. 41, 165–170.CrossRefGoogle Scholar
  26. 26.
    Ackermann, J. and Wolfgang, B. (1998), Polym. Degrad. Stabil. 59, 183–186.CrossRefGoogle Scholar
  27. 27.
    Kim, P., Kim, J.-H., and Oh, D.-K. (2003), World J. Microbiol. Biotechnol. 19, 357–361.CrossRefGoogle Scholar
  28. 28.
    Yoo, S. K. and Day, D. F. (2002), Process Biochem. 37, 739–745.CrossRefGoogle Scholar
  29. 29.
    White, D. (2000), The Physiology and Biochemistry of Prokaryotes, 4th ed. Oxford University Press, Inc., New York, NY.Google Scholar
  30. 30.
    Bourque, D., Pomerleau, Y., and Groleau, D. (1995), Appl. Microbiol. Biotechnol. 44, 367–376.CrossRefGoogle Scholar
  31. 31.
    Korotkova, N. and Lidstrom, M. E. (2001), J. Bacteriol. 183, 1038–1046.CrossRefGoogle Scholar
  32. 32.
    Ashby, R. D., Solaiman, D. K. Y., and Foglia, T. A. (2004), J. Polym. Environ. 12, 105–112.CrossRefGoogle Scholar
  33. 33.
    Anastas, P. T. and Zimmerman, J. B. (2003), Environ. Sci. Technol. 37, 94A-101A.CrossRefGoogle Scholar
  34. 34.
    Watanabe, K., Kodama, Y., and Harayama, S. (2001), J. Microbiol. Methods 44, 253–262.CrossRefGoogle Scholar
  35. 35.
    Seviour, R. J., Mino, T., and Onuki, M. (2003), FEMS Microbiol. Rev. 27, 99–127.CrossRefGoogle Scholar
  36. 36.
    Langenheder, S., Lindstrom, E. S., and Tranvik, L. J. (2006), Appl. Environ. Microbiol. 72, 212–220.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2007

Authors and Affiliations

  • Erik R. Coats
    • 1
  • Frank J. Loge
    • 2
  • William A. Smith
    • 3
  • David N. Thompson
    • 3
  • Michael P. Wolcott
    • 4
  1. 1.Department of Civil EngineeringUniversity of IdahoMoscow, Idaho
  2. 2.Department of Civil and Environmental EngineeringUniversity of California DavisDavis
  3. 3.Biotechnology DepartmentIdaho National LaboratoryIdaho Falls
  4. 4.Department of Civil and Environmental EngineeringWashington State UniversityPullman

Personalised recommendations