Abstract
Treatment of corn stover with aqueous ammonia removes most of the structural lignin, whereas retaining the majority of the carbohydrates in the solids. After treatment, both the cellulose and hemicellulose in corn stover become highly susceptible to enzymatic digestion. In this study, corn stover treated by aqueous ammonia was investigated as the substrate for lactic acid production by simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Spezyme-CP) and Lactobacillus pentosus American Type Culture Collection (ATCC) 8041 (Spanish Type Culture Collection [CECT]-4023) were used for hydrolysis and fermentation, respectively. In batch SSCF operation, the carbohydrates in the treated corn stover were converted to lactic acid with high yields, the maximum lactic acid yield reaching 92% of the stoichiometric maximum based on total fermentable carbohydrates (glucose, xylose, and arabinose). A small amount of acetic acid was also produced from pentoses through the phosphoketolase pathway. Among the major process variables for batch SSCF, enzyme loading and the amount of yeast extract were found to be the key factors affecting lactic acid production. Further tests on nutrients indicated that corn steep liquor could be substituted for yeast extract as a nitrogen source to achieve the same lactic acid yield. Fed-batch operation of the SSCF was beneficial in raising the concentration of lactic acid to a maximum value of 75.0 g/L.
This is a preview of subscription content,
to check access.References
Litchfield, J. H. (1996), Adv. Appl. Microbiol. 42, 45–95.
Parajo, J. C., Alonso, J. L., and Moldes, A. B. (1997), Food Biotechnol. 11(1), 45–58.
Garde, A., Jonsson, G., Schmidt, A. S., and Ahring, B. K. (2002), Bioresour. Technol. 8(3), 217–223.
Neureiter, M., Danner, H., Madzingaidzo, L., et al. (2004), Chem. Biochem. Eng. Q. 18(1), 55–63.
Iyer, P. V. and Lee, Y. Y. (1999), Biotechnol. Lett. 21(5), 371–373.
Lee, S. -M., Koo, Y. -M., and Lin, J. (2004), Adv. Biochem. Eng./Biotechnol. 87, 173–194.
Naveena, B. J., Altaf, M.; Bhadriah, K., and Reddy, G. (2005), Bioresour. Technol. 96(4), 485–490.
McMillan, J. D., Newman, M. M., Templeton, D. W., and Mohagheghi, A. (1999), App. Biochem. Biotechnol. 77–79, 649–665.
Sedlak, M. and Ho, N. W. Y. (2004), Appl. Biochem. Biotechnol. 113–116, 403–416.
Kim, T. H. and Lee, Y. Y. (2005), Appl. Biochem. Biotechnol. 121–124, 1119–1131.
Dien, B. S., Nichols, N. N., and Bothast, R. J. (2001), J. Ind. Microbiol. Biotechnol. 27(4), 259–264.
Dien, B. S., Nichols, N. N., and Bothast, R. J. (2002), J. Ind. Microbiol. Biotechnol. 29(5), 221–227.
Patel, M., Ou, M., Ingram, L. O., and Shanmugam, K. T. (2004), Biotechnol. Lett. 26(11), 865–868.
Patel, M., Ou, M., Ingram, M., and Shanmugam, K. T. (2005) Biotechnol. Progress 21(5), 1453–1460.
McCaskey, T. A., Zhou, S. D., Britt, S. N., and Strickland, R. (1994), Appl. Biochem. Biotechnol. 45–46, 555–563.
Perttunen, J., Myllykoski, L., and Keiski, R. L. (2001), Lactic acid fermentation of hemicellulose liquors and their activated carbon pretreatments. Focus on Biotechnology, 4 (Engineering and Manufacturing for Biotechnology), 29–38.
Bustos, G., Moldes, A. B., Cruz, J. M., and Dominguez, J. M. (2004), J. Sci. Food Agric. 84(15), 2105–2112.
Zhu, Y., Kim, T. H., Lee, Y. Y., Chen, R., and Elander, R. T. (2005), Appl. Biochem. Biotechnol. 129–132, 586–598.
DeMan, J. D., Rogosa, M., and Sharp, M. E. (1960) J. Appl. Bact. 23, 130–135.
Lawford, H. G. and Rousseau, J. D. (1997), Appl. Biochem. Biotechnol. 63–65, 287–304.
NREL (1996), Laboratory analytical procedures, National Renewable Energy Laboratory, Golden, CO.
Zhu, Y., Lee, Y.Y., and Elander, R. T. (2004), Appl. Biochem. Biotechnol. 117, 103–114.
Box, G. E. P. and Draper, N. R. (1987), Empirical Model-building and Response Surfaces, John Wiley & Sons, Inc.
Rivas, B., Moldes, A. B., Dominguez, J. M., and Parajo, J. C. (2004), Int. J. Food Microbiol. 97(1), 93–98.
Spindler, D. D., Wyman, C. E., and Grohmann, K. (1989), Biotechnol. Bioeng. 34(2), 189–195.
Mercier, P., Yerushalmi, L., Rouleau, D., and Dochain, D. (1992), J. Chem. Technol. Biotechnol. 55(2), 111–121.
Hujane, M. and Linko, Y. -Y. (1996), Appl. Microbiol. Biotechnol. 45(3), 307–313.
Nancib, N., Nancib, A., Boudjelal, A., Benslimane, C., Blanchard, F., and Boudrant, J. (2001), Bioresour. Technol. 78(2), 149–153.
Amartey, S. and Jeffries, T. W. (1994), Biotechnol. Lett. 16(2), 211–214.
Tellez-Luis, S. J., Moldes, A. B., Vazquez, M., and Alonso, J. L. (2003), Food Bioprod. Proc. 81(C3), 250–256.
Bustos, G., Modles, A. B., Cruz, J. M., and Dominguez, J. M. (2005), Biotechnol. Prog. 21(3), 793–798.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhu, Y., Lee, Y.Y. & Elander, R.T. Conversion of aqueous ammonia-treated corn stover to lactic acid by simultaneous saccharification and cofermentation. Appl Biochem Biotechnol 137, 721–738 (2007). https://doi.org/10.1007/s12010-007-9092-9
Issue Date:
DOI: https://doi.org/10.1007/s12010-007-9092-9