Skip to main content
Log in

An Improved Enzyme Assay for Molybdenum-Reducing Activity in Bacteria

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Molybdenum-reducing activity in the heterotrophic bacteria is a phenomenon that has been reported for more than 100 years. In the presence of molybdenum in the growth media, bacterial colonies turn to blue. The enzyme(s) responsible for the reduction of molybdenum to molybdenum blue in these bacteria has never been purified. In our quest to purify the molybdenum-reducing enzyme, we have devised a better substrate for the enzyme activity using laboratory-prepared phosphomolybdate instead of the commercial 12-phosphomolybdate we developed previously. Using laboratory-prepared phosphomolybdate, the highest activity is given by 10:4-phosphomolybdate. The apparent Michaelis constant, K m for the laboratory-prepared 10:4-phosphomolybdate is 2.56 ± 0.25 mM (arbitrary concentration), whereas the apparent V max is 99.4 ± 2.85 nmol Mo-blue min−1 mg−1 protein. The apparent Michaelis constant or K m for NADH as the electron donor is 1.38 ± 0.09 mM, whereas the apparent V max is 102.6 ± 1.73 nmol Mo-blue min−1 mg−1 protein. The apparent K m and V max for another electron donor, NADPH, is 1.43 ± 0.10 mM and 57.16 ± 1.01 nmol Mo-blue min−1 mg−1 protein, respectively, using the same batch of molybdenum-reducing enzyme. The apparent V max obtained for NADH and 10:4-phosphomolybdate is approximately 13 times better than 12-phoshomolybdate using the same batch of enzyme, and hence, the laboratory-prepared phosphomolybdate is a much better substrate than 12-phoshomolybdate. In addition, 10:4-phosphomolybdate can be routinely prepared from phosphate and molybdate, two common chemicals in the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Davis, G. K. (1991). In E. Merian (Ed.) In metals and their compounds in the environment, occurrence, analysis and biological relevance pp. 1089–1100. Weinheim: VCH.

    Google Scholar 

  2. Neunhäuserer, C., Berreck, M., & Insam, H. (2001). Water, Air and Soil Pollution, 128, 85–96.

    Article  Google Scholar 

  3. Yong, F. S. (2000). Mamut copper mine—The untold story. The National Seminar On The Malaysian Minerals Industry “Minerals: Underpinning yesterday’s needs, today’s development and tomorrows’s growth” 22nd to 24th June 2000, Pacific Sutera Hotel, Kota Kinabalu, Sabah, Malaysia.

  4. Levine, V. E. (1925). Journal of Bacteriology, 10, 217–263.

    CAS  Google Scholar 

  5. Capaldi, A., & Proskauer, B. (1896). Zeitschr. f. Hyg. u. Infektionskrankh., 23, 452–474.

    Article  Google Scholar 

  6. Jan, A. (1939). Bulletin des Sciences Pharmacologiques, 46, 336–339.

    CAS  Google Scholar 

  7. Marchal, J. G., & Gerard, T. H. (1948). Travaux du Laboratoire de microbiologie de la Faculté de Pharmacie de Nancy, 16, 11–23.

    Google Scholar 

  8. Woolfolk, C. A., & Whiteley, H. R. (1962). Journal of Bacteriology, 84, 647–658.

    CAS  Google Scholar 

  9. Bautista, E. M., & Alexander, M. (1972). Soil Science Society of America Proc., 36, 918–920.

    Article  CAS  Google Scholar 

  10. Campbell, M. A., Campbell, A. D., & Villaret, D. B. (1985). Proceedings of the National Academy of Sciences of the United States of America, 82, 227–231.

    Article  CAS  Google Scholar 

  11. Sugio, T., Tsujita, Y., Katagiri, T., Inagaki, K., & Tano, T. (1988). Journal of Bacteriology, 170(12), 5956–5959.

    CAS  Google Scholar 

  12. Yong, N. K., Oshima, M., Blake, R. C., & Sugio, T. (1997). Bioscience, Biotechnology, and Biochemistry, 61, 1523–1526.

    Article  CAS  Google Scholar 

  13. Lee, J. D. (1977). Concise inorganic chemistry. New York: Reinhold.

    Google Scholar 

  14. Sidgwick, N. V. (1984). The chemical elements and their compounds. Oxford: Clarendon.

    Google Scholar 

  15. Ghani, B., Takai, M., Hisham, N. Z., Kishimito, N., Ismail, M. I. A., Tano, T., et al. (1993). Applied and Environmental Microbiology, 59, 1176–1180.

    CAS  Google Scholar 

  16. Kazansky, L. P., & Fedotov, M. A. (1980). Journal of the Chemical Society, Chemical Communications, 13, 644–647.

    Article  Google Scholar 

  17. Munch, J. C., & Ottow, J. C. G. (1983). Environmental Biogeochemistry, Ecological Bulletin (Stockholm), 35, 383–394.

    CAS  Google Scholar 

  18. Shukor, M. Y., Syed, M. A., Lee, C. H., Karim, M. I. A., & Shamaan, N. A. (2002). Malaysian Journal of Biochemistry, 7, 71–72.

    CAS  Google Scholar 

  19. Ariff, A. B., Rosfarizan, M., Ghani, B., Sugio, T., & Karim, M. I. A. (1997). World Journal of Microbiology & Biotechnology, 13, 643–647.

    Article  CAS  Google Scholar 

  20. Shukor, M. Y., Lee, C. H., Omar, I., Karim, M. I. A., Syed, M. A., & Shamaan, N. A. (2003). Pertanika, Journal of Science and Technology, 11(2), 261–272.

    Google Scholar 

  21. Glenn, J. L., & Crane, F. L. (1956). Biochimica et Biophysica Acta, 22, 111–115.

    Article  CAS  Google Scholar 

  22. R. M. C. Dawson, D. C. Elliott, W. H. Elliott, & K. M. Jones (Eds.) (1969). Data for biochemical research. Oxford: Clarendon.

  23. Bradford, M. (1976). Analytical Biochemistry, 72, 248–252.

    Article  CAS  Google Scholar 

  24. Shukor, M. Y., Shamaan, N. A., Syed, M. A., Lee, C. H., & Karim, M. I. A. (2000). Asia Pacific Journal of Molecular Biology Biotechnologies, 8(2), 167–172.

    Google Scholar 

  25. Killefer, D. H., & Linz, A. (1952). Molybdenum compounds; Their chemistry and technology. New York: Interscience.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Shukor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukor, M.Y., Rahman, M.F.A., Shamaan, N.A. et al. An Improved Enzyme Assay for Molybdenum-Reducing Activity in Bacteria. Appl Biochem Biotechnol 144, 293–300 (2008). https://doi.org/10.1007/s12010-007-8113-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8113-z

Keywords

Navigation