Skip to main content

Advertisement

Log in

Biological Hydrogen Production Using Chloroform-treated Methanogenic Granules

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In fermentative hydrogen production, the low-hydrogen-producing bacteria retention rate limits the suspended growth reactor productivity because of the long hydraulic retention time (HRT) required to maintain adequate bacteria population. Traditional bacteria immobilization methods such as calcium alginate entrapment have many application limitations in hydrogen fermentation, including limited duration time, bacteria leakage, cost, and so on. The use of chloroform-treated anaerobic granular sludge as immobilized hydrogen-producing bacteria in an immobilized hydrogen culture may be able to overcome the limitations of traditional immobilization methods. This paper reports the findings on the performance of fed-batch cultures and continuous cultures inoculated with chloroform-treated granules. The chloroform-treated granules were able to be reused over four fed-batch cultures, with pH adjustment. The upflow reactor packed with chloroform-treated granules was studied, and the HRT of the upflow reactor was found to be as low as 4 h without any decrease in hydrogen production yield. Initial pH and glucose concentration of the culture medium significantly influenced the performance of the reactor. The optimum initial pH of the culture medium was neutral, and the optimum glucose concentration of the culture medium was below 20 g chemical oxygen demand/L at HRT 4 h. This study also investigated the possibility of integrating immobilized hydrogen fermentation using chloroform-treated granules with immobilized methane production using untreated granular sludge. The results showed that the integrated batch cultures produced 1.01 mol hydrogen and 2 mol methane per mol glucose. Treating the methanogenic granules with chloroform and then using the treated granules as immobilized hydrogen-producing sludge demonstrated advantages over other immobilization methods because the treated granules provide hydrogen-producing bacteria with a protective niche, a long duration of an active culture, and excellent settling velocity. This integrated two-stage design for immobilized hydrogen fermentation and methane production offers a promising approach for modifying current anaerobic wastewater treatment processes to harvest hydrogen from the existing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Levin, D. B., Pitt, L., & Love, M. (2004). International Journal of Hydrogen Energy, 29, 173–185.

    Article  CAS  Google Scholar 

  2. Hu, B., Liu, Y.,Chi, Z., Chen, S. (2007). Biological Engineering (Accepted).

  3. Kraemer, J. T., & Bagley, D. M. (2005). Environmental Science & Technology, 39, 3819–3825.

    Article  CAS  Google Scholar 

  4. Kumar, N., & Das, D. (2001). International Journal of Hydrogen Energy, 26, 1155–1163.

    Article  CAS  Google Scholar 

  5. Wu, S. Y., Lin, C. N., Chang, J. S., & Chang, J. S. (2005). International Journal of Hydrogen Energy, 30, 1375–1381.

    Article  CAS  Google Scholar 

  6. Hu, B., & Chen, S. (2007). International Journal of Hydrogen Energy (in press).

  7. Fang, H. H. P., Liu, H., & Zhang, T. (2002). Biotechnology and Bioengineering, 78, 44–52.

    Article  CAS  Google Scholar 

  8. Chang, F. Y., & Lin, C. Y. (2004). International Journal of Hydrogen Energy, 29, 33–39.

    Article  CAS  Google Scholar 

  9. Lee, K. S., Wu, J. F., Lo, Y. S., Lo, Y. C., Lin, P. J., & Chang, J. S. (2004). Biotechnology and Bioengineering, 87, 648–657.

    Article  CAS  Google Scholar 

  10. Fang, H. H. P., Li, Y. Y., & Chui, H. K. (1995). Journal of Environmental Engineering-Asce, 121, 153–160.

    Article  CAS  Google Scholar 

  11. Logan, B. E., Oh, S. E., Kim, I. S., & Van Ginkel, S. (2002). Environmental Science & Technology, 36, 2530–2535.

    Article  CAS  Google Scholar 

  12. Pol, L. W. H., Lopes, S. I. D., Lettinga, G., & Lens, P. N. L. (2004). Water Research, 38, 1376–1389.

    Article  Google Scholar 

  13. Macleod, F. A., Guiot, S. R., & Costerton, J. W. (1990). Applied and Environmental Microbiology, 56, 1598–1607.

    CAS  Google Scholar 

  14. Zheng, X. J., & Yu, H. Q. (2005). Journal of Environmental Management, 74, 65–70.

    CAS  Google Scholar 

  15. Nath, K., & Das, D. (2004). Applied Microbiology and Biotechnology, 65, 520–529.

    Article  CAS  Google Scholar 

  16. Tan, T. W., Hu, B., & Su, H. J. (2004). Enzyme and Microbial Technology, 35, 508–513.

    Article  CAS  Google Scholar 

  17. Van Ginkel, S. W., & Logan, B. (2005). Water Research, 39, 3819–3826.

    Article  Google Scholar 

  18. Rachman, M. A., Furutani, Y., Nakashimada, Y., Kakizono, T., & Nishio, N. (1997). Journal of Fermentation and Bioengineering, 83, 358–363.

    Article  CAS  Google Scholar 

  19. Oh, S. E., Lyer, P., Bruns, M. A., & Logan, B. E. (2004). Biotechnology and Bioengineering, 87, 119–127.

    Article  CAS  Google Scholar 

  20. Mizuno, O., Dinsdale, R., Hawkes, F. R., Hawkes, D. L., & Noike, T. (2000). Bioresource Technology, 73, 59–65.

    Article  CAS  Google Scholar 

  21. Yu, H. Q., & Mu, Y. (2006). Biotechnology and Bioengineering, 94, 988–995.

    Article  CAS  Google Scholar 

  22. Wu, S. Y., Lin, C. N., & Chang, J. S. (2003). Biotechnology Progress, 19, 828–832.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this project was from the Washington State University Agricultural Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, B., Chen, S. Biological Hydrogen Production Using Chloroform-treated Methanogenic Granules. Appl Biochem Biotechnol 148, 83–95 (2008). https://doi.org/10.1007/s12010-007-8048-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8048-4

Keywords

Navigation