Skip to main content
Log in

The Flexibility of the Non-Conservative Region at the C Terminus of d-Hydantoinase from Pseudomonas putida YZ-26 is Extremely Limited

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We previously reported that a deletion mutant (P478) with a residue Arg deleted at the C terminus of d-hydantoinase (P479) from Pseudomonas putida YZ-26 was dissociated into the monomer from its dimeric state. Based on the above result, a series of mutants of the enzyme with the C-terminal residues either deleted or substituted were prepared. The size-exclusion chromatography and bioactivity assay show that a C-terminal-substituted enzyme (R479D) and several truncated mutants (P478, P477, P476, and P475) are dissociated into the monomeric state as well, but their activities are largely retained. In contrast, two other mutants (R474 and R479A) are expressed in the form of random aggregates without any activity. Our experiments demonstrate that only the last four amino acids (-PVQR) at the C terminus of the enzyme can be deleted without seriously affecting its activity, although the enzyme is dissociated from a dimer into a monomer. These mutants also reveal some unique properties such as the enzymatic activity in vivo or in vitro, the effect of divalent metal ions, and the thermostability etc. in comparison to wild-type enzyme (P479). In addition, the three-dimensional structural modeling shows that the intact structure of the enzyme is essential, and the flexibility of the non-conservative region at the C terminus of the enzyme is quite limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shi, Y. W., Niu, L. X., Feng, X., & Yuan, J. M. (2006). Purification, enzymatic properties of a recombinant D-hydantoinase and its dissociation by zinc ion. World Journal of Microbiology and Biotechnology, 22, 675–680.

    Article  CAS  Google Scholar 

  2. Shi, Y. W., Zhao, L. X., Niu, L. X., & Yuan, J. M. (2005). Gene sequence, soluble expression and homologous comparison of a D-Hydantoinase from Pseudomonas putida YZ-26. Chemical Research in Chinese University, 21, 552–557.

    CAS  Google Scholar 

  3. Niu, L. X., Zhang, X. Y., Shi Y. W., & Yuan, J. M. (2007). Subunit dissociation and stability alteration of D-Hydantoinase deleted at the terminal amino acid residue. Biotechnology Letters, 29, 303–308.

    Article  CAS  Google Scholar 

  4. May, O., Siemann, M., Siemann, M. G., & Syldatk, C. (1998). Catalytic and structural function of zinc for the hydantoinase from Anthrobacter aurescens DSM 3745. Journal of Molecular Catalysis B, Enzymatic, 4, 211–218.

    Article  CAS  Google Scholar 

  5. Ogawa, J., & Shimizu, S. (1999). Microbial enzymes: new industrial applications from traditional screening methods. Trends in Biotechnology, 17, 13–20.

    Article  CAS  Google Scholar 

  6. Huang, C. Y., Chao, Y. P., & Yang, Y. S. (2003). Purification of industrial hydantoinase in one chromatographic step without affinity tag. Protein Expression and Purification, 30, 134–139.

    Article  CAS  Google Scholar 

  7. Xu, Z., Liu, Y. Q., Yang, Y. L., Jiang, W. H., Arnold, E., & Ding, J. P. (2003). Crystal Structure of D-Hydantoinase from Burkholderia pickettii at a resolution of 2.7 angstroms: Insights into the molecular basis of enzyme thermostability. Journal of Bacteriology, 185, 4038–4049.

    Article  CAS  Google Scholar 

  8. Abendroth, J., Niefind, K., & Schomburg, D. (2002). X-ray structure of a Dihydropyrimidinase from Thermus sp. at 1.3 Å resolution. Journal of Molecular Biology, 320, 143–156.

    Article  CAS  Google Scholar 

  9. Abe, I., Abe, T., Lou, W. W., Masuola, T., & Noguchi, H. (2007). Site-directed mutagenesis of conserved aromatic residues in rat squalene epoxidase. Biochemical and Biophysical Research Communications, 352, 259–263.

    Article  CAS  Google Scholar 

  10. Villadsen, D., & Nielsen, T. H. (2001). N-terminal truncation affects the kinetics and structure of fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase from Arabidopsis thaliana. Biochemical Journal, 359, 591–597.

    Article  CAS  Google Scholar 

  11. Cheon, Y. H., Park, H. S., Lee, S. C., Lee, D. E., & Kim, H. S. (2003). Structure-based mutational analysis of the active site residues of d-hydantoinase. Journal of Molecular Catalysis. B, Enzymatic, 26, 217–222.

    Article  CAS  Google Scholar 

  12. Kim, G. J., & Kim, H. S. (1998). C-Terminal Regions of D-Hydantoinases are nonessential for catalysis, but affect the oligomeric structure. Biochemical and Biophysical Research Communications, 243, 96–100.

    Article  CAS  Google Scholar 

  13. Laemmli, U. (1970). Cleavage of structural proteins during the assembly of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  14. Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Research, 31, 3381–3385.

    Article  CAS  Google Scholar 

  15. Gerlt, J. A., & Raushel, F. M. (2003). Evolution of function in (β/α)8-barrel enzymes. Current Opinion in Chemical Biology, 7, 252–264.

    Article  CAS  Google Scholar 

  16. Lohkamp, B., Andersen, B., Piskur, J., & Dobritzsch D. (2006). The crystal structures of dihydropyrimidinases reaffirm the close relationship between cyclic amidohydrolases and explain their substrate specificity. Journal of Biological Chemistry, 281, 13762–13776.

    Article  CAS  Google Scholar 

  17. Cheon, Y. H., Kim, H. S., Han, K. H., Abendroth, J., Niefind, K., Schomburg, D., et al. (2002). Crystal structure of D-Hydantoinase from Bacillus stearothermophilus: Insight into the stereochemistry of enantioselectivity. Biochemist, 41, 9410–9417.

    Article  CAS  Google Scholar 

  18. Radha Kishan, K. V., Vohra, R. M., Ganesan, K., Agrawal, V., Sharma, V. M., & Sharma, R. (2005). Molecular structure of D-Hydantoinase from Bacillus sp. AR9: Evidence for Mercury inhibition. Journal of Molecular Biology, 347, 95–105.

    Article  CAS  Google Scholar 

  19. Skoulakis, S., & Goodfellow, J. M. (2003). The pH-dependent stability of wild-type and mutant Transthyretin Oligomers. Biophysical Journal, 84, 2795–2804.

    Article  CAS  Google Scholar 

  20. Mei, Y. Z., He, B. F., & Ouyang, P. K. (2005). Progress in study on thermostability and substrate specificity of hydantoinase. Chinese Journal of Bioprocess Engineering, 3, 24–28.

    CAS  Google Scholar 

  21. Holm, L., & Sander, C. (1997). An evolutionary treasure: Unification of a broad set of Amidohydrolases related to urease. Proteins: Structure, Function and Genetics 28, 72–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National Science Foundation of Shanxi Province (NSFSX, 031042), China for this research support. We gratefully acknowledge the valuable discussion with Dr. Tao Yuan from Sanofi Pasteur, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Ming Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XY., Niu, LX., Shi, YW. et al. The Flexibility of the Non-Conservative Region at the C Terminus of d-Hydantoinase from Pseudomonas putida YZ-26 is Extremely Limited. Appl Biochem Biotechnol 144, 237–247 (2008). https://doi.org/10.1007/s12010-007-8004-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8004-3

Keywords

Navigation