Skip to main content
Log in

Developments in Directed Evolution for Improving Enzyme Functions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The engineering of enzymes with altered activity, specificity, and stability, using directed evolution techniques that mimic evolution on a laboratory timescale, is now well established. In vitro recombination techniques such as DNA shuffling, staggered extension process (StEP), random chimeragenesis on transient templates (RACHITT), iterative truncation for the creation of hybrid enzymes (ITCHY), recombined extension on truncated templates (RETT), and so on have been developed to mimic and accelerate nature’s recombination strategy. This review discusses gradual advances in the techniques and strategies used for the directed evolution of biocatalytic enzymes aimed at improving the quality and potential of enzyme libraries, their advantages, and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nikolaos, E. L. (2005). Biomolecular Engineering, 22, vii–ix.

    Article  Google Scholar 

  2. Cherry, J. R., & Fidantsef, A. L. (2003). Current Opinion in Biotechnology, 14, 438–443.

    Article  CAS  Google Scholar 

  3. Anwar, A., & Saleemuddin M. (1998). Bioresource Technology, 64, 175–183.

    Article  CAS  Google Scholar 

  4. Bylina, E. J., Coleman, W. J., Grek, C. L., Yang, M. M., & Youvan, D. C. (2000). Biotechnology Et Alia, 7, 1–6.

    Google Scholar 

  5. Bornscheuer, U. T., & Pohl, M. (2001). Current Opinion in Chemical Biology, 5, 137–143.

    Article  CAS  Google Scholar 

  6. Mills, D. R., Peterson, R. L., & Spiegelman, S. (1967). Proceedings of the National Academy of Sciences of the United States of America, 58, 217–224.

    Article  CAS  Google Scholar 

  7. Tao, H., & Cornish, V. W. (2002). Current Opinion in Chemical Biology, 6, 858–864.

    Article  CAS  Google Scholar 

  8. Schmidt-Dannert, C., & Arnold, F. H. (1999). Trends Biotechnology, 17, 135–136.

    Article  CAS  Google Scholar 

  9. Roodveldt, C., Aharoni, A., & Tawfik, D. S. (2005). Current Opinion in Structural Biology, 15, 50–56.

    Article  CAS  Google Scholar 

  10. Schmidt-Dannert, C. (2001). Biochemistry, 40, 13125–13136.

    Article  CAS  Google Scholar 

  11. Williams, G. J., Nelson, A. S., & Berry (2004). Cellular and Molecular Life Sciences, 61, 3034–3046.

    Article  CAS  Google Scholar 

  12. You, L., & Arnold, F. H. (1996). Protein Engineering, 9, 77–83.

    Article  CAS  Google Scholar 

  13. Hibbert, E. G., & Dalby, P. A. (2005). Microbial Cell Factories, 4, 29.

    Article  Google Scholar 

  14. Wong, T. S., Tee, K. L., Hauer, B., & Schwaneberg, U. (2004). Nucleic Acids Research, 32, 3e26.

    Google Scholar 

  15. Chen-Goodspeed, M., Sogorb, M. A., Wu, F., & Raushel, F. M. (2001). Biochemistry, 40, 1332–1339.

    Article  CAS  Google Scholar 

  16. Ozaki, S. I., & Ortiz de, M. P. R. (1994). Journal of the American Chemical Society, 116, 4487–4488.

    Article  CAS  Google Scholar 

  17. Reetz, M. T., Wilensek, S., Zha, D., & Jaeger, K. E. (2001). Angewandte Chemie. International Edition in English, 40, 3589–3591.

    Article  CAS  Google Scholar 

  18. Chen, R. (2001). Trends Biotechnology, 19, 13–14.

    Article  CAS  Google Scholar 

  19. DeSantis, G., & Jones, J. B. (1999). Current Opinion in Biotechnology, 10, 324–330.

    Article  CAS  Google Scholar 

  20. Davis, B. G. (2003). Current Opinion in Biotechnology, 14, 379–386.

    Article  CAS  Google Scholar 

  21. Hibbert, E. G., Baganz, F., Hailes, H. C., Ward, J. M., Lye, G. J., Woodley, J. M., et al. (2005). Biomolecular Engineering, 22, 11–19.

    Article  CAS  Google Scholar 

  22. Pritcharda, L., Corneb, D., Kella, D., Rowland, J., & Winson, M. (2005). Journal of Theoretical Biology, 234, 497–509.

    Article  Google Scholar 

  23. Fujii, R., Kitaoka, M., & Hayashi, K. (2004). Nucleic Acids Research, 32, 19 e145.

    Article  Google Scholar 

  24. Niu, W., Li, Z., Zhang, D., Yu, M., & Tan, T. (2006). Journal of Molecular Catalysis, B: Enzymatic, 43, 33–39.

    Article  CAS  Google Scholar 

  25. Otten, L. G., Sio, C. F., Vrielink, J., Cool, R. H., & Quax, W. J. (2002). Journal of Biological Chemistry, 277, 42121–42127.

    Article  CAS  Google Scholar 

  26. Reetz, M. T., Torre, C., Eipper, A., Lohmer, R., Hermes, M., Brunner, B., et al. (2004). Organic Letters, 6, 177–180.

    Article  CAS  Google Scholar 

  27. Stemmer, W. P. C. (1994). Proceedings of the National Academy of Sciences of the United States of America, 91, 10747–10751.

    Article  CAS  Google Scholar 

  28. Zhao, H., & Arnold, F. H. (1997). Nucleic Acids Research, 25, 1307–1308.

    Article  CAS  Google Scholar 

  29. Miyazaki, K. (2002). Nucleic Acids Research, 30, 24 e139.

    Article  Google Scholar 

  30. Binkowski, B. F., Richmond, K. E., Kaysen, J., Sussman, M. R., & Belshaw, P. J. (2005). Nucleic Acids Research, 33, 6 e55.

    Article  Google Scholar 

  31. Vanhercke, T., Ampe, C., Tirry, L., & Denolf, P. (2005). Analytical Biochemistry, 339, 9–14.

    Article  CAS  Google Scholar 

  32. Shao, Z., Zhao, H., Giver, L., & Arnold, F. H. (1998). Nucleic Acids Research, 26, 681–683.

    Article  CAS  Google Scholar 

  33. Volkov, A. A., Shao, Z., & Arnold, F. H. (1999). Nucleic Acids Research, 27, 18 e18.

    Article  Google Scholar 

  34. Pelletier, J. N. (2001). Nature Biotechnology, 19, 314–315.

    Article  CAS  Google Scholar 

  35. Lee, S. H., Ryu, E. J., Kang, M. J., Wang, E., Piao, Z., Choi, Y. J., et al. (2003). Journal of Molecular Catalysis, B: Enzymatic, 26, 119–129.

    Article  CAS  Google Scholar 

  36. Coco, W. M., Levinson, W. E., Michael, J. C., Harm, J. H., Aldis, D., Pienkos, P. T., et al. (2001). Nature Biotechnology, 19, 354–359.

    Article  CAS  Google Scholar 

  37. Lutz, S., Ostermeier, M., & Benkovic, S. J. (2001). Nucleic Acids Research, 29, 4 e16.

    Article  Google Scholar 

  38. Lutz, S., Ostermeier, M., Moore, G. L., Maranas, C. D., & Benkovic, S. J. (2001). PNAS, 98, 11248–11253.

    Article  CAS  Google Scholar 

  39. Zhao, H., Chockalingam, K., & Chen, Z. (2002). Current Opinion in Biotechnology, 13, 104–110.

    Article  CAS  Google Scholar 

  40. Gibbs, M. D., Nevalainen, K. M. H., & Bergquist, P. L. (2001). Gene, 271, 13–20.

    Article  CAS  Google Scholar 

  41. Bergquist, P. L., Reeves, R. A., & Gibbs, M. D. (2005). Biomolecular Engineering, 22, 63–72.

    Article  CAS  Google Scholar 

  42. Wong, T. S., Roccatano D., Zacharias, M., & Schwaneberg, U. (2006). Journal of Molecular Biology, 355, 858–871.

    Article  CAS  Google Scholar 

  43. Muller, K. M., Stebel, S. C., Knall, S., Zipf, G., Bernauer, H. S., & Arndt, K. M. (2005). Nucleic Acids Research, 33(13), e117.

    Article  Google Scholar 

  44. Miyazaki, K., & Arnold, F. H. (1999). Journal of Molecular Evolution, 49, 716–720.

    Article  CAS  Google Scholar 

  45. Neylon, C. (2004). Nucleic Acids Research, 32(4), 1448–1459.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Venkata Dasu.

Additional information

Submitted to Applied Biochemistry and Biotechnology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen, S., Venkata Dasu, V. & Mandal, B. Developments in Directed Evolution for Improving Enzyme Functions. Appl Biochem Biotechnol 143, 212–223 (2007). https://doi.org/10.1007/s12010-007-8003-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8003-4

Keywords

Navigation