Skip to main content

Advertisement

Log in

Optimization of Fermentation Parameters to Enhance the Production of Ethanol from Palmyra Jaggery Using Saccharomyces cerevisiae in a Batch Fermentor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Application of statistical experimental designs for optimization of fermentation parameters to enhance ethanol production, which is an economical and renewable energy source using Saccharomyces cerevisiae NCIM 3090 from palmyra jaggery, was studied in a batch fermentor. Using Plackett–Burman design, impeller speed, concentrations of CoCl2 and KH2PO4 were identified as significant variables, which highly influenced ethanol production, and these variables were further optimized using a central composite design (CCD). The ethanol production was adequately approximated with a full quadratic equation obtained from three factors and five levels of CCD. Maximum ethanol concentration of 132.56 g/l (16.8% [v/v]) was obtained for an impeller speed of 247.179 (≈250) rev/min, CoCl2 of 0.263 g/l and KH2PO4 of 2.39 g/l. A second-order polynomial regression model was fitted and was found adequate with R 2 of 0.8952. This combined statistical approach enables rapid identification and investigation of significant parameters for improving the ethanol production and could be very useful in optimizing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sherman, P. D., & Kavasmaneck, P. R. (1978). Ethanol. In G. Grayson (Eds.), Kirk-Othmer Encyclopedia of chemical technology (Vol. 9, 3rd ed., p. 338) New York: Wiley.

    Google Scholar 

  2. Wyman, C. E. (1994). Bioresource Technology, 50, 3–16.

    Article  CAS  Google Scholar 

  3. Lynd, L. R., Cushaman, J. H., Nichols, R. J., & Wyman, C. E. (1991). Science, 251, 1318.

    Article  CAS  Google Scholar 

  4. Olsson, L., Linden, T., & Hahn-Hagerdal, B. (1992). Applied Biotechnology and Biochemistry, 34/35, 359–367.

    Article  Google Scholar 

  5. Olsson, L., & Hahn-Hagerdal, B. (1993). Process Biochemistry, 28, 249–257.

    Article  CAS  Google Scholar 

  6. Heldwein, R., Tromballa, H. W., & Broda, E. (1977). Zeitschrift Für Allgemeine Mikrobiologie, 17(4), 299–308.

    Article  CAS  Google Scholar 

  7. Akrida-Demertzi, K., Demertzis, P. G., & Koutinas, A. A. (1988). Biotechnology and Bioengineering 31(7), 666–669.

    Article  CAS  Google Scholar 

  8. Veliky, I., & Stefanec, J. (1964). Effect of cobalt on the multiplication of Saccharomyces cerevisiae. Naturwissenschaften, 51(21), 518–519.

    Article  CAS  Google Scholar 

  9. Fuhrmann, G. F., & Rothstein, A. (1968). Biochimica et Biophysica Acta, 163(3), 331–338.

    Article  CAS  Google Scholar 

  10. Caylak, B., & Vardar Sukan, F. (1998). Turkish Journal Chemistry, 22, 351–359.

    CAS  Google Scholar 

  11. Lee, J. M., & Woodward, J. (1983). Biotechnology and Bioengineering, 25, 2441.

    Article  CAS  Google Scholar 

  12. Elisson, A., Hofmeyr, J. H. S., Pedler, S., & Hahn-Hagerdal, B. (2001). Enzyme and Microbial Technology, 29, 288–297.

    Article  Google Scholar 

  13. Singh, B., & Satyanarayana, T. (2006). Journal of Applied Microbiology, 101, 344–352.

    Article  CAS  Google Scholar 

  14. Plackett, R. L., & Burman, J. P. (1946). Biometrika, 33, 305–325.

    Article  Google Scholar 

  15. Box, G. E. P., & Wilson, K. B. (1951). Journal of Royal Statistical Society (Series B), 13, 1–45.

    Google Scholar 

  16. Cochran, W. G., & Cox, G. M. (1957). Experimental designs (2nd ed., pp. 346–354). New York: Wiley.

    Google Scholar 

  17. Veera Venkata Ratnam, B. (2001). Ph.D. thesis, Andhra University, Visakhapatnam, AP, India.

  18. Francis, F., Sabu, A., Nampoothiri, K. M., Ramachandran, S., Ghosh, S., Szakacs, G., et al. (2003). Biochemical Engineering Journal, 15, 107–115.

    CAS  Google Scholar 

  19. Bandaru, V. V. R., Somalanka, S. R., Mendu, D. R., Madicherla, N. R., & Chityala, A. (2006). Enzyme and Microbial Technology, 38, 209–214.

    Article  CAS  Google Scholar 

  20. Veera Venkata Ratnam, B., Narasimha Rao, M., Damodara Rao, M., Subba Rao, S., & Ayyanna, C. (2003). World Journal of Microbiology and Biotechnology, 19, 523–526.

    Article  Google Scholar 

  21. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  22. Akhanazarova, S., & Kafarov, V. (1982). Experiment optimization in chemistry and chemical engineering. Moscow: Mir.

    Google Scholar 

  23. Khuri, A. I., & Cornell, J. A. (1987). Response surfaces: Design and analysis. New York: Marcel Dekker.

    Google Scholar 

  24. Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experiments. New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veera Venkata Ratnam Bandaru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandaru, V.V.R., Bandaru, S.R., Somalanka, S.R. et al. Optimization of Fermentation Parameters to Enhance the Production of Ethanol from Palmyra Jaggery Using Saccharomyces cerevisiae in a Batch Fermentor. Appl Biochem Biotechnol 143, 224–235 (2007). https://doi.org/10.1007/s12010-007-0048-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-0048-x

Keywords

Navigation