Applied Biochemistry and Biotechnology

, Volume 143, Issue 2, pp 153–163 | Cite as

Enzyme–Carbon Nanotube Conjugates in Room-temperature Ionic Liquids

  • Bilge Eker
  • Prashanth Asuri
  • Saravanababu Murugesan
  • Robert J. Linhardt
  • Jonathan S. Dordick
Article

Abstract

Room-temperature ionic liquids (RTILs) are intriguing solvents, which are recognized as “green” alternatives to volatile organics. Although RTILs are nonvolatile and can dissolve a wide range of charged, polar, and nonpolar organic and inorganic molecules, there remain substantial challenges in their use, not the least of which is the solvents’ high viscosity that leads to potential mass transfer limitations. In the course of this work, we discovered that the simple adsorption of the bacterial protease, proteinase K, onto single-walled carbon nanotubes (SWNTs) results in intrinsically high catalytic turnover. The high surface area and the nanoscopic dimensions of SWNTs offered high enzyme loading and low mass transfer resistance. Furthermore, the enzyme–SWNT conjugates displayed enhanced thermal stability in RTILs over the native suspended enzyme counterpart and allowed facile reuse. These enzyme–SWNT conjugates may therefore provide a way to overcome key operational limitations of RTIL systems.

Keywords

Room-temperature ionic liquids Enzyme–SWNT conjugates Diffusional limitations Enzyme kinetics Thermostability Reusability 

References

  1. 1.
    Klibanov, A. M. (2001). Nature, 409, 241–246.CrossRefGoogle Scholar
  2. 2.
    Lee, M., & Dordick, J. S. (2002). Current Opinion in Biotechnology, 13, 376–384.CrossRefGoogle Scholar
  3. 3.
    Blanchard, L. A., Hancu, D., Beckman, E. J., & Brennecke, J. F. (1999). Nature, 399, 28–29.CrossRefGoogle Scholar
  4. 4.
    Freemantle, M. (1998). Chemical Engineering News, 76, 32–37.Google Scholar
  5. 5.
    Eckstein, M., Sesing, M., Kragl, U., & Adlercreutz, P. (2002). Biotechnology Letters, 24, 867–872.CrossRefGoogle Scholar
  6. 6.
    Laszlo, J. A., & Compton, D. L. (2001). Biotechnology and Bioengineering, 75, 181–186.CrossRefGoogle Scholar
  7. 7.
    Lozano, P., De Diego, T., Guean J. P., Vaultier, M., & Iborra, J. L. (2001). Biotechnology and Bioengineering, 75, 563–569.CrossRefGoogle Scholar
  8. 8.
    Schmidt, R. D. & Verger, R. (1998). Angewandte Chemie (International Ed. in English), 37, 1608–1633.CrossRefGoogle Scholar
  9. 9.
    Kaftzik, N. W., & Kragl, U. (2002). Organic Process Research Development, 6, 553–557.CrossRefGoogle Scholar
  10. 10.
    Kragl, U., Eckstein, M., & Kaftzik, N. (2002). Current Opinion in Chemical Biology, 13, 565–571.Google Scholar
  11. 11.
    Erbeldinger, M., Mesiano, A. J., & Russell, A. J. (2000). Biotechnology Progress, 16, 1129–1131.CrossRefGoogle Scholar
  12. 12.
    Hinckley, G., Mozhaev, V. V., Budde, C., & Khmelnitsky, Y. L. (2002). Biotechnology Letters, 24, 2083–207.CrossRefGoogle Scholar
  13. 13.
    Laszlo, J. A., & Compton, D. L. (2002). Journal of Molecular Catalysis B: Enzymatic, 18, 109–120.CrossRefGoogle Scholar
  14. 14.
    Lau, R. M., van Rantwijk, F., Seddon, K. R., & Sheldon, R. A. (2004). Green Chemistry, 6, 483–487.CrossRefGoogle Scholar
  15. 15.
    Lozano, P., De Diego, T., Carrie, D., Vaultier, M., & Iborra, J. L. (2001). Biotechnology Letters, 23, 1529–1533.CrossRefGoogle Scholar
  16. 16.
    Asuri, P., Karajanagi, S. S., Yang, H., Kim, T., Kane, R. S., & Dordick, J. S. (2006). Langmuir, 22, 5833–5836.CrossRefGoogle Scholar
  17. 17.
    Karajanagi, S. S., Vertegel, A. A., Kane, R. S., & Dordick, J. S. (2004). Langmuir, 20, 11594–11599.CrossRefGoogle Scholar
  18. 18.
    Peigney, A., Laurent, C., Flahaut, E., Bacsa, R. R., & Rousset, A. (2001). Carbon, 39, 507–514.CrossRefGoogle Scholar
  19. 19.
    Wells, J. A., Cunningham, B. C., Graycar, T. P., & Estell, D. A. (1987). Proceedings of the National Academy of Sciences of the United States of America, 84, 5167–5171.CrossRefGoogle Scholar
  20. 20.
    Sheldon, R. A., Lau, R. M., Sorgedrager, M. J., van Rantwijk, F., & Seddon, R. K. (2002). Green Chemistry, 4, 147–151.CrossRefGoogle Scholar
  21. 21.
    Singh, R. K., Gourinath, S., Sharma, S., Roy, I., Gupta, M. N., Betzel, C., et al. (2001). Protein Engineering, Design & Selection, 14, 307–313.CrossRefGoogle Scholar
  22. 22.
    Torres, S., & Castro, G. R. (2004). Food Technology and Biotechnology, 42, 271–277.Google Scholar
  23. 23.
    Larsen, A. N., Moe E., Helland, R., Gjellesvik, D. R., & Willassen, N. P. (2006). FEBS Journal, 273, 47–60.CrossRefGoogle Scholar
  24. 24.
    Betzel, C., Teplyakov, A. V., Harutyunyan, E. H., Saenger, W., & Wilson, K. S. (1990). Protein Engineering, Design & Selection, 3, 161–172.CrossRefGoogle Scholar
  25. 25.
    Gupta, M. N., Tyagi, R., Sharma, S., Karthikeyan, S., & Singh, T. P. (2000). Structure, Function, and Genetics, 39, 226–234.CrossRefGoogle Scholar
  26. 26.
    Blanch, H. W. & Clark, D. S. (1997). Biochemical Engineering. New York: Marcel Dekker.Google Scholar
  27. 27.
    Kim, J., Douglas, D. S., & Dordick, J. S. (1999). Biotechnology and Bioengineering, 67, 112–116.CrossRefGoogle Scholar
  28. 28.
    Klibanov, A. M. (1983). Science, 219, 722–727.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Bilge Eker
    • 1
  • Prashanth Asuri
    • 1
  • Saravanababu Murugesan
    • 1
  • Robert J. Linhardt
    • 1
    • 2
    • 3
  • Jonathan S. Dordick
    • 1
    • 2
  1. 1.Department of Chemical and Biological Engineering, Rensselaer Nanotechnology Center, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  2. 2.Department of Biology, Rensselaer Nanotechnology Center, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  3. 3.Department of Chemistry, Rensselaer Nanotechnology Center, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations