Skip to main content
Log in

Statistical Optimization for Succinic Acid Production from E. Coli in a Cost-Effective Medium

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Response surface methodology (RSM) was employed for optimization of medium components and cultural parameters in cost effective cane molasses based medium for attaining high yield of succinic acid. The important factors obtained by “one-variable-at-a-time-approach” (cane molasses, corn steep liquor, sodium carbonate, and inoculum density) were further optimized by RSM. The optimum values of the parameters obtained through RSM (cane molasses 12.5%, corn steep liquor 7.5%, and sodium carbonate 25 mM) led to almost double yield of succinic acid (15.2 g/l in 36 h) as against “one-variable-at-a-time-approach” (7.1 g/l in 36 h) in 500-ml anaerobic bottles containing 300-ml cane molasses based medium. Subsequently, in 10-l bioreactor succinic acid production from Escherichia coli was further improved to 26.2 g/l in 30 h under conditions optimized through RSM. This fermentation-derived succinic acid will definitely help in replacing existing environmentally hazardous and cost-intensive chemical methods for the production of succinic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jain, M. K., Datta, R., & Zeikus, J. G. (1989). In T. K. Ghose (Ed.), Bioprocess engineering: the first generation (pp. 366–389). England: Ellis Harwood Ltd. Chichester.

    Google Scholar 

  2. Guettler, M. V., & Jain, M. K. (1996). US Patent, 5, 573, 931.

  3. Vemuri, G. N., Eiteman, M. A. & Altman, E. (2002). Applied and Environmental Microbiology, 68, 1715–1727.

    Article  CAS  Google Scholar 

  4. Millard, C. S., Chao, Y. P., Liao, J. C., & Donnelly, M. I. (1996). Applied Microbiology and Biotechnology, 62, 1808–1810.

    CAS  Google Scholar 

  5. Stols, L., & Donnelly, M. I. (1997). Applied and Environmental Microbiology, 63, 2695–2701.

    CAS  Google Scholar 

  6. Sriram, V., & Dennis, J. M. (1999). Biotechnology Progress, 15, 845–854.

    Article  Google Scholar 

  7. Zeikus, J. G., Jain, M. K., & Elankovan, P. (1999). Applied and Microbiology Biotechnology, 51, 545–552.

    Article  CAS  Google Scholar 

  8. Lee, P. C., Lee, W. G., Lee, S. Y., Chang, H. N., & Chang, Y. K. (2000). Biotechnology and Bioprocess Engineering, 5, 379–381.

    CAS  Google Scholar 

  9. Lee, S. Y., Hong, S. H., Lee, S. H., & Park, S. J. (2004). Macromolecular Bioscience, 4, 157–164.

    Article  CAS  Google Scholar 

  10. Hong, S. H., Kim, J. S., Lee, S. Y., In, Y. H., Choi, S. S., Rih, J. K., et al. (2004). Nature Biotechnology, 22, 1275–1281.

    Article  CAS  Google Scholar 

  11. Landucci, R., Goodman, B., & Wyman, C. (1994). Applied Biochemistry and Biotechnology, 45–46, 678–696.

    Google Scholar 

  12. Lee, P. C., Lee, W. G., Lee, S. Y., & Chang, H. N. (2001). Biotechnology and Bioengineering, 72, 41–48.

    Article  CAS  Google Scholar 

  13. Ryu, H. W., Kang, K. H., Pan, J. G., & Chang, H. N. (2001). Biotechnology and Bioengineering, 72, 119–124.

    Article  CAS  Google Scholar 

  14. Lee, P. C., Lee, S. Y., Hong, S. H., & Chang, H. N. (2002). Applied Microbiology and Biotechnology, 58, 663–668.

    Article  CAS  Google Scholar 

  15. Chotani, G., Dodge, T., Hsu, A., Kumar, M., LaDuca, R., Trimbur, et al. (2000). Biochimica et Biophysica Acta, 1543, 434–455.

    CAS  Google Scholar 

  16. Lynd, L. R., Wyman, C. E., & Gerngross, T. U. (1999). Biotechnology Progress, 15, 777–793.

    Article  CAS  Google Scholar 

  17. Zhang, J., & Greasham, R. (1999). Applied Microbiology and Biotechnology, 51, 407–421.

    Article  CAS  Google Scholar 

  18. Hounjg, J. Y., Chen, K. C., & Hsu, W. H. (1989). Applied Microbiology and Biotechnology, 39, 61–64.

    Google Scholar 

  19. Yalimaki, G., Hawrysh, Z. J., Hardin, R. T., & Thomson, A. B. R. (1991). Journal of Food Science, 56, 751–755.

    Article  Google Scholar 

  20. Sunitha, I., Subba Rao, M. V., & Ayyanna, C. (1998). Bioprocess Engineering, 18, 353–359.

    CAS  Google Scholar 

  21. Puri, S., Beg, Q. K., & Gupta, R. (2002). Current Microbiology, 44, 286–290.

    Article  CAS  Google Scholar 

  22. Ambati, P., & Ayyanna, C. (2001). World Journal of Microbiology and Biotechnology, 17, 331–335.

    Article  CAS  Google Scholar 

  23. Haaland, P. D. (1989). In P. D. Haaland (Ed.), Experimental design in biotechnology (pp. 1–18). New York: Marcel Dekker.

    Google Scholar 

  24. De Coninck, J., Bouquelet, S., Dumortier, V., Duyme, F., & Denantes, V. I. (2000). Journal of Industrial Microbiology and Biotechnology, 24, 285–290.

    Article  Google Scholar 

  25. Najafpour, G. D., & Shan, C. P. (2003). Bioresource Technology, 86, 91–94.

    Article  CAS  Google Scholar 

  26. Samuelov, N. S., Lamed, R., Lowe, S., & Zeikus, J. G. (1991). Applied and Environmental Microbiology, 57, 3013–3019.

    CAS  Google Scholar 

  27. Agarwal, L., Isar, J., & Saxena, R. K. (2005). Journal of Biochemistry and Biophysical Methods, 63, 24–32.

    Article  CAS  Google Scholar 

  28. Agarwal, L., Isar, J., Meghwanshi, G. K., & Saxena, R. K. (2006). Journal of Applied Microbiology, 100, 1348–1354.

    Article  CAS  Google Scholar 

  29. Chatterjee, R., Millard, C. S., Champion, K., Clark, D. P., & Donnelly, M. I. (2001). Applied and Environmental Microbiology, 67, 148–154.

    Article  CAS  Google Scholar 

  30. Burkert, J. F. M., Maugeri, F., & Rodrigues, M. I. (2004). Bioresource Technology, 91, 77–84.

    Article  CAS  Google Scholar 

  31. Vohra, A., & Satyanarayana, T. (2004). Journal of Applied Microbiology, 97, 471–476.

    Article  CAS  Google Scholar 

  32. Rao, J. L. U. M., & Satyanarayana, T. (2003). Journal of Applied Microbiology, 95, 712–718.

    Article  CAS  Google Scholar 

  33. Podkovyrov, S. M., & Zeikus, J. G. (1993). Journal of General Microbiology, 139, 223–228.

    CAS  Google Scholar 

  34. Van der Werf, M. J., Guettler, M. V., Jain, M. K., & Zeikus, J. G. (1997). Archives of Microbiology, 167, 332–342.

    Article  Google Scholar 

  35. Samuelov, N. S., Datta, R., Jain, M. K., & Zeikus, J. G. (1999). Applied and Environmental Microbiology, 65, 2260–2263.

    CAS  Google Scholar 

  36. Lee, P. C., Lee, W. G., Kwon, S., Lee, S. Y., & Chang, H. N. (1999). Enzyme and Microbial Technology, 24, 549–554.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge with thanks the financial support from Council of Scientific and Industrial Research (CSIR) under a New Millennium Indian Technology Leadership Initiative (NMITLI) project sanctioned to RKS. L.A. and J.I. acknowledge with thanks the fellowships of CSIR to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra K. Saxena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, L., Isar, J., Dutt, K. et al. Statistical Optimization for Succinic Acid Production from E. Coli in a Cost-Effective Medium. Appl Biochem Biotechnol 142, 158–167 (2007). https://doi.org/10.1007/s12010-007-0014-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-0014-7

Keywords

Navigation