Skip to main content
Log in

Methods and terminology for assessment of ocular hemodynamics: Toward reducing “Perfusionspeak”

  • Original Article
  • Published:
Annals of Ophthalmology

Abstract

Techniques for assessment of ocular hemodynamics were reviewed, including the Langham Ocular blood flow system, video fluorescein angiography, scanning laser angiography, laser speckle procedures, color Doppler imaging, laser Doppler velocimetry, laser Doppler flowmetry, magnetic resonance imaging, and indocyanine green angiography. These techniques were reviewed with the aim of introducing the underlying fundamental principles, highlighting their advantages and limitations, assessing their contributions to understanding ocular physiology, and considering their diagnostic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strang R. Measurement of ocular blood flow. Trans Ophthalmol Soc UK. 1974;94:371–377.

    PubMed  CAS  Google Scholar 

  2. Williamson TH, Harris A. Ocular blood flow measurement. Br J Ophthalmol. 1994;78:939–945.

    PubMed  CAS  Google Scholar 

  3. Hill DW. Measurement of retinal blood flow. Trans Ophthalmol Soc UK. 1976;96:199–201.

    PubMed  CAS  Google Scholar 

  4. Langham ME, Farrell RA, O'Brien V, Silver DM, Schilder P. Blood flow in the human eye. Acta Ophthalmol. 1989;191(suppl):9–13.

    CAS  Google Scholar 

  5. Alm A, Bill A. The effect of stimulation on the sympathetic chain on retinal oxygen tension and uveal, retinal and cerebral blood flow in cats. Acta Physiol Scand. 1973;88:84–95.

    PubMed  CAS  Google Scholar 

  6. Riva CE, Petrig B. Blue field entopic phenomenon and blood velocity in the retinal capillaries. J Opt Soc Am. 1980;70:1234–1238.

    PubMed  CAS  Google Scholar 

  7. Yap MKH, Brown B. The repeatability of the noninvasive blue field entoptic phenomenon method for measuring macular capillary blood flow. Opt Vis Sci. 1994;71:346–349.

    Article  CAS  Google Scholar 

  8. Arend O, Harris A, Sponsel WE, Remky A, Reim M, Wolf S. Macular capillary particle velocities: a blue field and scanning laser comparison. Graefes Arch Clin Exp Ophthalmol. 1995;233:244–249.

    Article  PubMed  CAS  Google Scholar 

  9. Ulrich WD, Ulrich C. Oculo-oscillo-dynamography: a diagnostic procedure for recording ocular pulses and measuring retinal and ciliary arterial blood pressures. Ophthalmic Res. 1985;17:308–317.

    Article  PubMed  CAS  Google Scholar 

  10. Pillunat LE, Lang GK, Harris A. The visual response to increased ocular blood flow in normal pressure glaucoma. Surv Ophthalmol. 1994;38(suppl):139–148.

    Article  Google Scholar 

  11. Krakau CET. Calculation of the pulsatile ocular blood flow. Invest Ophthalmol Vis Sci. 1992;33:2754–2756.

    PubMed  CAS  Google Scholar 

  12. Langham ME, Farrell RA, O'Brien V, Silver DM, Schilder P. Noninvasive measurement of pulsatile blood flow in the human eye. In: Lambrou GN, Greve EL, eds. Ocular Blood Flow in Glaucoma. Amsterdam, Holland: Kugler & Ghedini Publications; 1989:93–99.

    Google Scholar 

  13. Silver DM, Farrell RA. Validity of pulsatile ocular blood flow measurements. Surv Ophthalmol. 1994;38(suppl):72–80.

    Article  Google Scholar 

  14. Silver DM, Farrell RA, Langham ME, O'Brien V, Schilder P. Estimation of pulsatile ocular blood flow from intraocular pressure. Acta Ophthalmol. 1989;191(suppl):25–29.

    CAS  Google Scholar 

  15. Philips CI, Shaw TL. Model analysis of impression tonometry and tonography. Exp Eye Res. 1970;10:161–182.

    Article  Google Scholar 

  16. Walker RE, Compton GA, Langham ME. Pneumatic applanation tonometer studies: IV. Analysis of pulsatile response. Exp Eye Res. 1975;20:245–253.

    Article  PubMed  CAS  Google Scholar 

  17. Ytteborg J. The role of intraocular blood volume in rigidity measurements on human eyes. Acta Ophthalmol. 1960;38:410–436.

    CAS  Google Scholar 

  18. Oppenheim B, Dickersin K, Min YI, Schockett S. Reliability of measurements using the Langham ocular blood flow system. Invest Ophthalmol Vis Sci. 1993;34(suppl):940.

    Google Scholar 

  19. Spraul CW, Lang GE, Ronzani M, Högel J, Lang GK. Reproducibility of measurements with a new slit lamp-mounted ocular blood flow tonograph. Graefes Arch Clin Exp Ophthalmol. 1998;236:274–279.

    Article  PubMed  CAS  Google Scholar 

  20. Schmetterer L, Lexer F, Unfried C, Sattmann H, Fercher A. Topical measurement of fundus pulsation. Opt Eng. 1995;34:711–716.

    Article  Google Scholar 

  21. Schmetterer L, Wolzt M, Salomon A, et al. Effect of isoproterenol, phenylephrine, and sodium nitroprusside on fundus pulsation in healthy volunteers. Br J Ophthalmol. 1996;80:217–223.

    PubMed  CAS  Google Scholar 

  22. Marsh RJ, Ford SM. Blood flow in the anterior segment of the eye. Trans Ophthalmol Soc UK. 1980;100:388–397.

    PubMed  CAS  Google Scholar 

  23. Hickam JB, Frayser R. A photographic method for measuring the mean retinal circulation time using fluorescein. Invest Ophthalmol Vis Sci. 1965;4:876–884.

    CAS  Google Scholar 

  24. Vilser W, Pawlowski D. Problems of indicator dilution techniques. Folia Ophthalmol. 1990;15:213–219.

    Google Scholar 

  25. Koyama N, Shimizu K, Mihara M, Tsachida Y, Wolf S, Reim M. Retinal circulation times in quantitative fluorescein angiograph. Graefes Arch Clin Exp Ophthalmol 1990;228:442–446.

    Article  PubMed  CAS  Google Scholar 

  26. Arnold JV, Gates JW, Taylor KM. Possible errors in the measurement of retinal lesions. Invest Ophthalmol Vis Sci. 1993;1993:2576–2580.

    Google Scholar 

  27. Gabel VP, Birngruber R, Nasemann J. Fluorescein angiography with the scanning laser ophthalmoscope. Laser Lights Ophthalmol. 1988;2:35–40.

    Google Scholar 

  28. Nasemann JE, Müller M. Scanning laser angiography. In: Nasemann JE, Burk ROW, eds. Scanning Laser Ophthalmoscopy and Tomography. Munich, Germany: Quintessenz; 1990:63–80.

    Google Scholar 

  29. Wolf S, Toonen H, Koyama T, Meyer-Ebrecht D, Reim M. Scanning laser ophthalmoscopy for the quantification of retinal blood-flow parameters: a new imaging technique. In: Nasemann JE, Burk ROW, eds. Scanning Laser Ophthalmoscopy and Tomography. Munich, Germany: Quintessenz; 1990:91–96.

    Google Scholar 

  30. Rehkopf P, Friberg TR, Mandarino L, et al. Retinal circulation time using scanning laser ophthalmoscope-image processing techniques. In: Nasemann JE, Burk ROW, eds. Scanning Laser Ophthalmoscopy and Tomography. Munich, Germany: Quintessenz; 1990:81–89.

    Google Scholar 

  31. Schulte K, Wolf S, Arend O, Harris A, Henle C, Reim M. Retinal hemodynamics during increased intraocular pressure. Ger J Ophthalmol. 1996;5:1–5.

    PubMed  CAS  Google Scholar 

  32. Harris A, Arend O, Wolf S, Cantor LB, Martin BJ. CO2 dependence of retinal arterial and capillary blood velocity. Acta Ophthalmol. 1995;73:421–424.

    CAS  Google Scholar 

  33. Harris A, Arend O, Bohnke K, Kroepfl E, Danis R, Martin B. Retinal blood flow during dynamic exercise. Graefes Arch Clin Exp Ophthalmol. 1996;234:440–444.

    Article  PubMed  CAS  Google Scholar 

  34. Wolf S, Arend O, Reim M. Measurement of retinal hemodynamics with scanning laser ophthalmoscopy: reference values and variation. Surv Ophthalmol. 1994;38(suppl):95–100.

    Article  Google Scholar 

  35. Harris A, Arend O, Arend S, Martin B. Effects of topical dorzolamide on retinal and retrobulbar hemodynamics. Acta Ophthalmol. 1996;74:569–572.

    CAS  Google Scholar 

  36. Ben-Nun J, Constable JJ. Segmentation of fluorescence in the retinal microcirculation: is it a valid indicator of blood cell flow? [letter] Br J Ophthalmol 1992;76:510.

    PubMed  CAS  Google Scholar 

  37. Arend O, Wolf S. Segmentation of fluorescence in the retinal microcircualtion: is it a valid indicator of blood cell flow? [reply]. Br J Ophthalmol. 1992;76:510–511.

    Google Scholar 

  38. Tanaka T, Muraoka K, Shimuzu K Fluorescein fundus angiography with scanning laser ophthalmoscope: visibility of leukocytes and platelets in peripheral capillaries. Ophthalmology. 1991;98:1824–1829.

    PubMed  CAS  Google Scholar 

  39. Arend O, Wolf S, Jung F, et al. Retinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis of perifoveal capillary network. Br J Ophthalmol. 1991;75:514–518.

    PubMed  CAS  Google Scholar 

  40. Nasemann JE. Fluorescein angiographic imaging of erythrocytes with the scanning laser ophthalmoscope. Fortschr Ophthalmol. 1991;88:138–141.

    PubMed  CAS  Google Scholar 

  41. Wolf S, Arend O, Jung F. Mikrostrombahn und Mikrozirkulation im perimakulären Kapillarnetz. Ophthalmologe. 1992;89:45–49.

    PubMed  CAS  Google Scholar 

  42. Arend O, Harris JA, Shoemaker WE, et al. Perifoveal capillary microcirculation comparison: comparison of blue light stimulation and scanning laser technique. Invest Ophthalmol Vis Sci. 1993;34(suppl):1391.

    Google Scholar 

  43. Goodman JW. Statistical properties of laser speckle patterns. In: Dainty JC, ed. Laser Speckle and Related Phenomena. New York, NY: Springer-Verlag; 1975:9–75.

    Google Scholar 

  44. Sugiyama T, Utsumi T, Azuma I, Fujii H. Measurement of optic nerve head circulation: comparison of laser speckle and hydrogen clearance methods. Jpn J Ophthalmol. 1996;40:339–343.

    PubMed  CAS  Google Scholar 

  45. Tamaki Y, Araie M, Kawamoto E, Eguchi S, Fujii H. Non-contact, two-dimensional measurement of tissue circulation in choroid and optic nerve head using laser speckle phenomenon. Exp Eye Res. 1995;60:373–383.

    Article  PubMed  CAS  Google Scholar 

  46. Tamaki Y, Kawamoto E, Eguchi S, Araie M, Fujii H. An apparatus using laser speckle phenomenon for noninvasive 2-dimensional analysis of microcirculation in the optic nerve head. Nippon Ganka Gakkai Zasshi. 1993;97:501–508.

    PubMed  CAS  Google Scholar 

  47. Tamaki Y, Kawamoto E, Eguchi S, Araie M, Fujii H. An apparatus using laser speckle phenomenon for noninvasive 2-dimensional analysis of choroidal microcirculation. Nippon Ganka Gakkai Zasshi. 1993;97:602–609.

    PubMed  CAS  Google Scholar 

  48. Fujii H. Visualization of retinal blood flow by laser speckle flowgraphy. Med Bio Eng Comput. 1994;32:302–304.

    Article  CAS  Google Scholar 

  49. Tamaki Y, Tomita K, Araie M, Fujii H. An apparatus using laser speckle phenomenon for noncontact two-dimensional analysis of microcirculation in optic nerve head or choroid in human eyes. Nippon Ganka Gakkai Zasshi. 1995;99:601–606.

    PubMed  CAS  Google Scholar 

  50. Tamaki Y, Araie M, Kawamoto E, Eguchi S, Fujii H. Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon. Invest Ophthalmol Vis Sci. 1994;35:3825–3834.

    PubMed  CAS  Google Scholar 

  51. Tomidokoro A, Araie M, Tamaki Y, Tomita K. In vivo measurement of iridal circulation using laser speckle phenomenon. Invest Ophthalmol Vis Sci. 1998;39:364–371.

    PubMed  CAS  Google Scholar 

  52. Powis RL. Color flow imaging: understanding its science and technology. J Diagn Med Ultrasound. 1988;4:236–245.

    Article  Google Scholar 

  53. Taylor KJW, Holland S. Doppler US: I. Basic principles, instrumentation, and pitfalls. Radiology. 1990;174:297–307.

    PubMed  CAS  Google Scholar 

  54. Williamson TH, Harris A. Color Doppler ultrasound imaging of the eye and orbit. Surv Ophthalmol. 1996;40:255–167.

    Article  PubMed  CAS  Google Scholar 

  55. Harris A, Sergott RC, Spaeth GL, et al. Color Doppler analysis of ocular vessel blood velocity in normal tension glaucoma. Am J Ophthalmol. 1994;118:642–649.

    PubMed  CAS  Google Scholar 

  56. Harris A, Spaeth GL, Sergott RC, Katz LJ, Cantor LB, Martin BJ. Retrobulbar arterial hemodynamic effect of betaxolol and timolol in normal-tension glaucoma. Am J Ophthalmol. 1995;120:168–175.

    PubMed  CAS  Google Scholar 

  57. Harris A, Tippke S, Sievers C, Picht G, Lieb W, Martin B. Acetazolamide and CO2: acute effects on cerebral and retrobulbar hemodynamics. J Glaucoma. 1996;5:39–45.

    PubMed  CAS  Google Scholar 

  58. Harris A, Joos K, Kay M. et al. Acute IOP elevation with scleral suction: effects on retrobulbar haemodynamics. Br J Ophthalmol. 1996;80:1055–1059.

    PubMed  CAS  Google Scholar 

  59. Lieb WE, Cohen SM, Merton DA, Shields JA, Mitchell DG, Goldberg BB. Color Doppler imaging of the eye and orbit: technique and normal vascular anatomy. Arch Ophthalmol. 1991;109:527–531.

    PubMed  CAS  Google Scholar 

  60. Dennis KJ, Dixon ERD, Winsberg F, Ernest JT, Goldstick TK. Variability in measurement of central retinal artery velocity using color doppler imaging. J Ultrasound Med. 1995;14:463–466.

    PubMed  CAS  Google Scholar 

  61. Keyser BJ, Flaharty PM, Sergott RC, Brown GC, Lieb WE, Annesley WH. Color doppler imaging of arterial blood flow in central retinal vein occlusion. Ophthalmology. 1994;101:1357–1361.

    PubMed  CAS  Google Scholar 

  62. Baxter GM, Williamson TH, McKillop G, Dutton GN. Color doppler ultrasound of orbital and optic nerve blood flow: effects of posture and timolol 0.5%. Invest Ophthalmol Vis Sci. 1992;33:604–610.

    PubMed  CAS  Google Scholar 

  63. Rankin SJA, Walman BE, Buckley AR, Drance SM. Color Doppler imaging and spectral analysis of the optic nerve vasculature in glaucoma. Am J Ophthalmol. 1995;119:685–693.

    PubMed  CAS  Google Scholar 

  64. Cellini M, Possati GL, Caramazza N, Caramazza R. Colour doppler analysis of the choroidal circulation in chronic open-angle glaucoma. Ophthalmologica. 1996;210:200–202.

    Article  PubMed  CAS  Google Scholar 

  65. Steigerwalt RD, Cesarone MR, Laurora G, et al. Doppler ultrasound of the central retinal artery by duplex scanning. Retina. 1996;16:513–517.

    Article  PubMed  Google Scholar 

  66. Feke GT, Goger DG, Tagawa H, Delori FC. Laser Doppler technique for absolute measurement of blood speed in retinal vessels. IEEE Trans Biomed Eng 1987;34:673–680.

    Article  PubMed  CAS  Google Scholar 

  67. Riva CE, Grunwald JE, Sinclair SH, Petrig BL. Blood velocity and volumetric flow rate in human retinal vessels. Invest Ophthalmol Vis Sci. 1985;26:1124–1132.

    PubMed  CAS  Google Scholar 

  68. Riva CE, Grunwald JE, Sinclair SH, O'Keefe K. Fundus camera based retinal LDV. Appl Opt. 1981;20:117–120.

    CAS  PubMed  Google Scholar 

  69. Riva CE, Petrig BO, Grunwald JE. Retinal blood flow. In: Shepherd AP, Öberg PÅ, eds. Laser-Doppler Flowmetry. Boston, Mass: Kluwer Academic Publishers; 1989:349–383.

    Google Scholar 

  70. Damon EG, Duling DR. A comparison between mean blood velocities and center-line red-cell velocities as measured with a mechanical image streaking velocimeter. Microvasc Res. 1979;17:330–332.

    Article  PubMed  CAS  Google Scholar 

  71. Grunwald JE, Riva CE, Kozart DM. Retinal circulation during a spontaneous rise of intraocular pressure. Br J Ophthalmol. 1988;72:754–758.

    PubMed  CAS  Google Scholar 

  72. Hamard P, Hamard H, Dufaux J. Blood flow rate in the microvasculature of the optic nerve head in primary open angle glaucoma: a new approach. Surv Ophthalmol. 1994;38(suppl):87–94.

    Article  Google Scholar 

  73. Riva CE, Grunwald JE, Petrig BL. Reactivity of the human retinal circulation to darkness: a laser doppler velocimeter study. Invest Ophthalmol Vis Sci. 1983;24:737–740.

    PubMed  CAS  Google Scholar 

  74. Grunwald JE, Riva CE, Baine J, Brucker AJ. Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control. Invest Ophthalmol Vis Sci. 1992;33:356–363.

    PubMed  CAS  Google Scholar 

  75. Riva CE, Grunwald JE, Sinclair SH. Laser doppler measurement of relative blood velocity in the human optic nerve head. Invest Ophthalmol Vis Sci. 1982;22:241–248.

    PubMed  CAS  Google Scholar 

  76. Nilsson GE. Perimed's LDV flowmeter. In: Shepherd AP, Oberg PA, eds. Developments in Cardiovascular Medicine: Laser-Doppler Blood Flowmetry. Vol 107. Boston, Mass: Kluwer Academic Publishers; 1990:193–199.

    Google Scholar 

  77. Borgos JA. TSI's LDV blood flowmeter. In: Shepherd AP, Oberg PA, eds. Developments in Cardiovascular Medicine: Laser-Doppler Blood Flowmetry. Vol 107. Boston, Mass: Kluwer Academic Publishers; 1990:73–92.

    Google Scholar 

  78. Riva CE, Cranstoun SD, Mann R, Barnes GE. Local choroidal blood flow in the cat by laser Doppler flowmetry. Invest Ophthalmol Vis Sci. 1994;35:608–618.

    PubMed  CAS  Google Scholar 

  79. Riva CE, Harino S, Petrig BL, Shonat RD. Laser Doppler flowmetry in the optic nerve. Exp Eye Res. 1992;55:499–506.

    Article  PubMed  CAS  Google Scholar 

  80. Gherezghiher T, Okubo H, Koss MC. Choroidal and ciliary blood flow analysis: application of laser Doppler flowmetry in experimental animals. Exp Eye Res. 1991;53:151–156.

    Article  PubMed  CAS  Google Scholar 

  81. Harris A, Anderson DR, Pillunat L, et al. Laser Doppler flowmetry measurement of changes in human optic nerve head blood flow in response to blood gas perturbations. J Glaucoma. 1996;5:258–265.

    PubMed  CAS  Google Scholar 

  82. Nicolela MT, Hnik P, Drance SM. Scanning laser doppler flowmeter study of retinal and optic disk blood flow in glaucomatous patients. Am J Ophthalmol. 1996;122:775–783.

    PubMed  CAS  Google Scholar 

  83. Michelson G, Groh M, Langhans M, Schmauss B. Two-dimensional mapping of retinal and papillary microcirculation by scanning laser doppler flowmetry. Klin Monatsbl Augenheilkd. 1995; 207:180–190.

    Article  PubMed  CAS  Google Scholar 

  84. Michelson G, Schmauss B, Langhans MJ, Harazny J, Groh MJM. Principle, validity, and reliability of scanning laser doppler flowmetry. J Glaucoma. 1996;5:99–105.

    PubMed  CAS  Google Scholar 

  85. Michelson G, Langhans MJ, Groh MJM. Perfusion of the juxtapapillary retina and the neuroretinal rim area in primary open angle glaucoma. J Glaucoma. 1996;5:91–98.

    PubMed  CAS  Google Scholar 

  86. Michelson G, Schmauss B. Two-dimensional mapping of the perfusion of the retina and optic nerve head. Br J Ophthalmol. 1995; 79:1126–1132.

    PubMed  CAS  Google Scholar 

  87. Tsang A, Kagemann L, Harris A. Heidelberg retina flowmeter: in-vitro evaluation. Invest Ophthalmol Vis Sci. 1997; 38(suppl):1050.

    Google Scholar 

  88. Jensen PS, Glucksberg MR. Regional variation in capillary hemodynamics in the cat retina. Invest Ophthalmol Vis Sci. 1998;39: 407–415.

    PubMed  CAS  Google Scholar 

  89. Harris A, Kagemann L, Evans DW, Chung HS, Cantor L, Garrett M. A new method for evaluation of ocular blood flow in glaucoma: pointwise flow analysis of HRT images. Invest Ophthalmol Vis Sci. 1997;38(suppl):439.

    Google Scholar 

  90. Berkowitz BA. Adult and newborn rat inner retinal oxygenation during carbogen and 100% oxygen breathing. Invest Ophthalmol Vis Sci. 1996;37:2089–2098.

    PubMed  CAS  Google Scholar 

  91. Berkowitz BA, Wilson CA. Quantitative mapping of ocular oxygenation using magnetic resonance imaging. Magn Reson Med. 1995;33:579–581.

    Article  PubMed  CAS  Google Scholar 

  92. Kagemann L, Harris A, Cantor LB, Chung HS, Kristinsson JK. A new method for evaluation of choroidal blood flow in glaucoma: area dilution analysis. Invest Ophthalmol Vis Sci. 1997;38(suppl):1049.

    Google Scholar 

  93. Schwartz B. Circulatory defects of the optic disk and retina in ocular hypertension and high-pressure open-angle glaucoma. Surv Ophthalmol. 1994;38(suppl):23–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spraul, C.W., Lang, G.E. & Lang, G.K. Methods and terminology for assessment of ocular hemodynamics: Toward reducing “Perfusionspeak”. Ann Ophthalmol 32, 229–235 (2000). https://doi.org/10.1007/s12009-000-0061-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12009-000-0061-y

Keywords

Navigation