Skip to main content
Log in

Assessing the efficacy of machine learning models in hydroxyapatite nano-powder assisted electro discharge machining of Ti-6Al-4 V Grade-5 alloy

  • Original Article
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Ti-6Al-4 V Grade-5 alloy is remarkably used in the medical, aerospace, and automotive industries owing to its characteristics like lightweight – high strength, and admirable corrosion resistance. Experiments have consistently held significant value in uncovering new knowledge and assessing the performance attributes of a process. However, due to high costs and limited trials, there is a shift towards using Machine Learning (ML) to forecast the properties of such materials. This study aims to establish a connection with the performance parameters and surface characterization of EDM of Ti-6Al-4 V Grade-5 alloy using Al2O3 and SiC Hydroxyapatite (HA) nano-powder mixed deionized water. The tool wear rate (TWR), material removal rate (MRR), and surface roughness (SR) properties characteristics were analyzed by experimenting with the input variables of peak current, pulse on and off time, and powder concentration. Four different ensemble ML methods were used to predict the performance characteristics, co-starring bagging, extra tree (ET), extreme gradient boosting (XGB), and random forest (RF) regressors. The data set is used to train the proposed Python models, and the hyperparameter tuning procedure is used to find the best model for predicting the target values. The observed data shows the accuracy of the proposed model’s predictions for tool wear rate values outperforms that of its predictions for MRR and SR values. The XGB model exhibits superior performance compared to the bagging, RF, and ET models, as demonstrated by its higher values of adjusted R2 score, root mean square error, and mean absolute error. The study emphasizes the significance of choosing the best min_samples_split value, with min_samples_split = 2 consistently producing superior results for both RF and ET regressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Verma, U., Garg, C., Bhushan, M., Samant, P., Kumar, A., Negi, A.: Prediction of students’ academic performance using Machine Learning Techniques. In: 2022 International Mobile and Embedded Technology Conference, MECON 2022. pp. 151–156 (2022)

  2. Abdolrasol, M.G.M., Suhail Hussain, S.M., Ustun, T.S., Sarker, M.R., Hannan, M.A., Mohamed, R., Ali, J.A., Mekhilef, S., Milad, A.: Artificial neural networks based optimization techniques: A review, (2021)

  3. Pimenov, D.Y., Bustillo, A., Mikolajczyk, T.: Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth. J. Intell. Manuf. (2018). https://doi.org/10.1007/s10845-017-1381-8

    Article  Google Scholar 

  4. Biswal, S., Tripathy, S., Tripathy, D.K.: Machining performance analysis for PMEDM of biocompatible material Ti-6Al-7Nb alloy: A machine learning approach. Mater. Lett. (2022). https://doi.org/10.1016/j.matlet.2022.132337

    Article  Google Scholar 

  5. Walia, A.S., Srivastava, V., Rana, P.S., Somani, N., Gupta, N.K., Singh, G., Pimenov, D.Y., Mikolajczyk, T., Khanna, N.: Prediction of tool shape in electrical discharge machining of en31 steel using machine learning techniques. Met. (Basel). (2021). https://doi.org/10.3390/met11111668

    Article  Google Scholar 

  6. Shanmugasundar, G., Vanitha, M., Čep, R., Kumar, V., Kalita, K., Ramachandran, M.: A comparative study of linear, random forest and adaboost regressions for modeling non-traditional machining. Processes. (2021). https://doi.org/10.3390/pr9112015

    Article  Google Scholar 

  7. Sudhir, Sehgal, A.K., Nain, S.S.: Machine learning algorithms evaluation and optimization of WEDM of nickel based super alloy: A review. In: Materials Today: Proceedings (2021)

  8. Xiong, J., Zhang, T.Y., Shi, S.Q.: Machine learning of mechanical properties of steels. Sci. China Technol. Sci. (2020). https://doi.org/10.1007/s11431-020-1599-5

    Article  Google Scholar 

  9. Talayero, C., Aït-Salem, O., Gallego, P., Páez-Pavón, A., Merodio-Perea, R.G., Lado-Touriño, I.: Computational prediction and experimental values of mechanical properties of carbon nanotube reinforced cement. Nanomaterials. (2021). https://doi.org/10.3390/nano11112997

    Article  Google Scholar 

  10. Joshi, A.Y., Joshi, A.Y.: Multi response optimization of PMEDM of Ti6Al4V using Al2O3 and SiC powder added de-ionized water as dielectric medium using grey relational analysis. SN Appl. Sci. 3 (2021). https://doi.org/10.1007/s42452-021-04712-3

  11. Rahman, A., Deshpande, P., Radue, M.S., Odegard, G.M., Gowtham, S., Ghosh, S., Spear, A.D.: A machine learning framework for predicting the shear strength of carbon nanotube-polymer interfaces based on molecular dynamics simulation data. Compos. Sci. Technol. (2021). https://doi.org/10.1016/j.compscitech.2020.108627

    Article  Google Scholar 

  12. Kekez, S., Kubica, J.: Application of artificial neural networks for prediction of mechanical properties of cnt/cnf reinforced concrete. Mater. (Basel). (2021). https://doi.org/10.3390/ma14195637

    Article  Google Scholar 

  13. Milad, A., Hussein, S.H., Khekan, A.R., Rashid, M., Al-Msari, H., Tran, T.H.: Development of ensemble machine learning approaches for designing fiber-reinforced polymer composite strain prediction model. Eng. Comput. (2022). https://doi.org/10.1007/s00366-021-01398-4

    Article  Google Scholar 

  14. Guo, H., Zhao, J.Y., Yin, J.H.: Random forest and multilayer perceptron for predicting the dielectric loss of polyimide nanocomposite films. RSC Adv. (2017). https://doi.org/10.1039/c7ra04147k

    Article  Google Scholar 

  15. Jain, P., Chhabra, H., Chauhan, U., Singh, D.K., Anwer, T.M.K., Ahammad, S.H., Hossain, M.A., Rashed, A.N.Z.: Multiband Metamaterial absorber with absorption prediction by assisted machine learning. Mater. Chem. Phys. 307, 128180 (2023). https://doi.org/10.1016/j.matchemphys.2023.128180

    Article  Google Scholar 

  16. Jain, P., Chhabra, H., Chauhan, U., Prakash, K., Gupta, A., Soliman, M.S., Islam, M.S., Islam, M.T.: Machine learning assisted hepta band THz metamaterial absorber for biomedical applications. Sci. Rep. 13, 1792 (2023). https://doi.org/10.1038/s41598-023-29024-x

    Article  Google Scholar 

  17. Breiman, L.: Bagging predictors. Mach. Learn. (1996). https://doi.org/10.1007/bf00058655

    Article  Google Scholar 

  18. Shijie Gao, Liu, X., Liu, X., Chen, D., Guo, H., Yin, J.: Predicting the AC Conductivity of Nanocomposite Films using the bagging model. Polym. Sci. - Ser. A. (2022). https://doi.org/10.1134/S0965545X22700559

    Article  Google Scholar 

  19. Watpade, A., Thakor, S., Sharma, P., Shah, D., Vaja, C.R., Jain, P.: Synthesis, characterization, and Dielectric Spectroscopy of TiO2 and ZnO Nanoparticle-Reinforced Epoxy composites. J. Mater. Sci. Mater. Electron. 35, 466 (2024). https://doi.org/10.1007/s10854-024-12202-6

    Article  Google Scholar 

  20. Jain, P., Yedukondalu, J., Chhabra, H., Chauhan, U., Sharma, L.D.: EEG-based detection of cognitive load using VMD and LightGBM classifier. Int. J. Mach. Learn. Cybern. (2024). https://doi.org/10.1007/s13042-024-02142-2

    Article  Google Scholar 

  21. Watpade, A.D., Thakor, S., Jain, P., Mohapatra, P.P., Vaja, C.R., Joshi, A., Shah, D.V., Tariqul Islam, M.: Comparative analysis of machine learning models for predicting dielectric properties in MoS2 nanofiller-reinforced epoxy composites. Ain Shams Eng. J. 102754 (2024). https://doi.org/10.1016/j.asej.2024.102754

  22. Shingala, B., Panchal, P., Thakor, S., Jain, P., Joshi, A., Vaja, C.R., Siddharth, R.K., Rana, V.A.: Random Forest Regression Analysis for Estimating Dielectric Properties in Epoxy composites Doped with Hybrid Nano fillers. J. Macromol. Sci. Part. B. 0, 1–15 (2024). https://doi.org/10.1080/00222348.2024.2322189

    Article  Google Scholar 

  23. Jain, P., Chhabra, H., Chauhan, U., Prakash, K., Samant, P., Singh, D.K., Soliman, M.S., Islam, M.T.: Machine learning techniques for Predicting Metamaterial Microwave absorption performance: A comparison. IEEE Access. 11, 128774–128783 (2023). https://doi.org/10.1109/ACCESS.2023.3332731

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Joshi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest regarding the publication of this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, P., Joshi, A. & Joshi, A. Assessing the efficacy of machine learning models in hydroxyapatite nano-powder assisted electro discharge machining of Ti-6Al-4 V Grade-5 alloy. Int J Interact Des Manuf (2024). https://doi.org/10.1007/s12008-024-01886-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-024-01886-z

Keywords

Navigation