Skip to main content
Log in

Hoop tensile strength testing of glass/jute hybrid filament wound composite tubes

  • Original Article
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The filament winding process is the most suitable method for fabricating axisymmetric products like pressure vessels and pipes. As raw materials, synthetic carbon, glass, and aramid fibers are still used. Although few natural fibers have high specific strength compared to synthetic fibers, they are not explored for filament-winded products due to the need for continuous fibers and lack of proper investigation into their suitability for filament winding. Few research on the crushing, flexural, and compressive strength of natural fiber wound tubes for structural applications have been conducted. Still, their usage for tubes subjected to internal pressure remains unreported. This study compares the apparent hoop tensile strength of a Jute yarn/E-glass hybrid composite tube with that of a non-hybrid E-glass tube. Jute yarn/E-glass hybrid tube samples were fabricated by filament winding with two stacking sequences. A split disk test is conducted to investigate the hoop tensile strength of Jute yarn/E-glass hybrid ring specimens. The burst pressure obtained from the split disk test method is compared with the model simulated in ANSYS ACP software. Experimental results reveal that hoop tensile strength is improved by increasing the hoop angle. Furthermore, simulation results suggest that the burst pressure of a Jute/E-glass hybrid pressure vessel was comparable to that of a non-hybrid E-glass pressure vessel. So, there is scope to add jute fiber for pressure vessels and pipes subjected to internal pressure. After testing for hoop tensile strength, a morphological examination was conducted using a scanning electron microscope. A thermal analysis of a hybrid tube was performed, and the results demonstrated thermal stability up to 280 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Madsen B. Properties of plant fiber yarn polymer composites – an experimental study. PhD Thesis, Department of Civil Engineering, Technical University of Denmark, p. 206, (2004).

  2. Goutianos, S., Peijs, T., Nystrom, B., Skrifvars, M.: Development of flax fiber based textile reinforcements for composite applications. Appl. Compos. Mater. 13(4), 199–215 (2006). https://doi.org/10.1007/s10443-006-9010-2

    Article  Google Scholar 

  3. Shrigandhi, G.D., Kothavale, B.S.: Biodegradable composites for filament winding process. Mater. Today: Proceed. 1(42), 2762–2768 (2021). https://doi.org/10.1016/B978-0-12-803581-8.10313-3

    Article  Google Scholar 

  4. Ansari, S.M., Ghazali, C.M.R., Husin, K.: Natural fiber filament wound composites: a review. Artic. MATEC Web Conf. (2017). https://doi.org/10.1051/matecconf/20179701018

    Article  Google Scholar 

  5. Shrigandhi, G.D., Kothavale, B.S.: Biodegradable composites for filament winding process. Mater. Today Proceed. 42, 2762–2768 (2021). https://doi.org/10.1016/j.matpr.2020.12.718

    Article  Google Scholar 

  6. Lehtiniemi, P., Dufva, K., Berg, T., Skrifvars, M., Järvelä, P.: Natural fiber-based reinforcements in epoxy composites processed by filament winding. J. Reinforced Plast. Composites 30(23), 1947–1955 (2011)

    Article  Google Scholar 

  7. Pérez, M.G., Guo, Y., Knippers, J.: Integrative material and structural design methods for natural fibers filament-wound composite structures: the LivMatS pavilion. Mater. Des. 217, 110624 (2022). https://doi.org/10.1016/j.matdes.2022.110624

    Article  Google Scholar 

  8. Weber, D.E., Graupner, N., Müssig, J.: Manufacturing of flax-and glass-fibre reinforced thin-walled tubes and measuring their interlaminar shear properties by torsion tests. Composite Struct. 1(319), 117191 (2023). https://doi.org/10.1016/j.compstruct.2023.117191

    Article  Google Scholar 

  9. Dun, M., Hao, J., Wang, W., Wang, G., Cheng, H.: Sisal fiber reinforced high density polyethylene pre-preg for potential application in filament winding. Compos. Part B Eng. 15(159), 369–377 (2019)

    Article  Google Scholar 

  10. Mokhtar, I., Yahya, M.Y., Abd Kader, A.S., Abu, H.S.: Experimental analysis of kenaf filament wound tubes under axial compression load. Appl. Mech. Mater. 19(660), 778–782 (2014). https://doi.org/10.4028/www.scientific.net/AMM.660.778

    Article  Google Scholar 

  11. Misri, S., Ishak, M.R., Sapuan, S.M., Leman, Z.: The effect of winding angles on crushing behavior of filament wound hollow kenaf yarn fiber reinforced unsaturated polyester composites. Fibers Polym. 16(10), 22662275 (2015). https://doi.org/10.1007/s12221-015-5447-y

    Article  Google Scholar 

  12. Misri, S., Sapuan, S.M., Leman, Z., Ishak, M.R.: Torsional behaviour of filament wound kenaf yarn fibre reinforced unsaturated polyester composite hollow shafts (1980–2015). Mater. Des. 65, 953–960 (2015). https://doi.org/10.1016/j.matdes.2014.09.073

    Article  Google Scholar 

  13. Misri, S., Ishak, M.R., Sapuan, S.M., Leman, Z.: Split-disk properties of Kenaf yarn fibre-reinforced unsaturated polyester composites using filament winding method. Pertanika J. Sci. Technol. 1(24), 475–482 (2016)

    Google Scholar 

  14. Ismail, A.: Energy absorption performances of square winding kenaf fiber reinforced composite tubes. Int. J. Eng. Technol. 6(6), 2662–2668 (2015)

    Google Scholar 

  15. Ismail, A.E.: Crushing mechanisms of cylindrical winding kenaf fiber reinforced composites. J. Teknol. (2016). https://doi.org/10.11113/jt.v78.5258

    Article  Google Scholar 

  16. Ismail, A.E., Noranai, Z., Nor, N.H.M., Tobi, A.L.M., Ahmad, M.H.: Effect of hybridized fiber wrapped around the aluminum tubes on the crushing performances. IOP Conf. Series: Mater. Sci. Eng. 160, 012019 (2016). https://doi.org/10.1088/1757-899x/160/1/012019

    Article  Google Scholar 

  17. Supian, A.B.M., Sapuan, S.M., Zuhri, M.Y.M., Zainudin, E.S., Ya, H.H., Hisham, H.N.: Effect of winding orientation on energy absorption and failure modes of filament wound kenaf/glass fibre reinforced epoxy hybrid composite tubes under intermediate-velocity impact (IVI) load. J. Mater. Res. Technol. 10, 1–14 (2021). https://doi.org/10.1016/j.jmrt.2020.11.103

    Article  Google Scholar 

  18. Chen, M., Weng, Y., Semple, K., Zhang, S., Jiang, X., Ma, J., Fei, B., Dai, C.: Sustainability and innovation of bamboo winding composite pipe products. Renew. Sustain. Energy Rev. 1(144), 110976 (2021). https://doi.org/10.1016/j.rser.2021.110976110976

    Article  Google Scholar 

  19. Shi, J., Yuan, S., Zhang, W., Zhang, J., Chen, H.: Hydrothermal aging mechanisms and service life prediction of twisted bamboo fiber wound composites. Mater. Des. 1(227), 111716 (2023). https://doi.org/10.1016/j.matdes.2023.111716

    Article  Google Scholar 

  20. Mufaro Moyo, Ramachandran Velmurugan: Quasi-static axial crushing performance of jute/glass hybrid composite tubes. https://www.researchgate.net/publication/334453725

  21. Heckadka, S.S., Nayak, S.Y., Vishal, S.P., Amin, N.M.: Evaluation of flexural and compressive strength of e glass/jute and E glass/banana hybrid epoxy hollow composite shafts. Key Eng. Mater. 777, 438–445 (2018). https://doi.org/10.4028/www.scientific.net/KEM.777.438

    Article  Google Scholar 

  22. Shi, J., ShaofeiYuan, W.Z., Wang, G., Zhang, J., Chen, H., Cheng, H.: Jute yarn-wound composites: optimization of methods for evaluating mechanical properties and improvement of mechanical properties. J. Mater. Res. Technol. 21, 827–840 (2022). https://doi.org/10.1016/j.jmrt.2022.09.076

    Article  Google Scholar 

  23. Kari, D.E., et al.: Evaluation of circumferential properties of Jute/Epoxy tubes manufactured by filament winding based on the fiber orientation. J. Mater. Eng. Struct. 8, 459–468 (2021)

    Google Scholar 

  24. Azeem, M., Ya, H.H., Alam, M.A., Kumar, M., Sajid, Z., Gohari, S., Maziz, A., Lokman Gemi, S.I.B., Abdullah, S., Khan, S.H.: Influence of winding angles on hoop stress in composite pressure vessels: finite element analysis. Results Eng. 21, 101667 (2024). https://doi.org/10.1016/j.rineng.2023.101667

    Article  Google Scholar 

  25. Bouvier, M., Guiheneuf, V., Jean-marie, A.: Modeling and simulation of a composite high pressure vessel made of sustainable and renewable alternative fibers. Int. J. Hydrogen Energy 44, 11970–11978 (2019)

    Article  Google Scholar 

  26. Ganesh D. Shrigandhi, Mihil Shah, Basavaraj S. Kothavale: First-Ply Failure Pressure of Symmetric Laminated Hybrid Composite CNG Tank , Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition, IMECE2021, pp V003T03A049–1-V003T03A049–6,ISBN:978–0–7918–8557–4, https://doi.org/10.1115/IMECE2021-70945.

  27. Mansor, M.R., Mastura, M.T., Sapuan, S.M., Zainudin, A.Z.: The environmental impact of natural fiber composites through life cycle assessment analysis. In: Durability and life prediction in biocomposites, fibre-reinforced composites and hybrid composites, pp. 257–285. Elsevier (2019). https://doi.org/10.1016/B978-0-08-102290-0.00011-8

    Chapter  Google Scholar 

  28. Ramesh, P., Vigneshvaran, R., Kumar, M.H., Rangappa, S.M., Siengchin, S.: Environmental impact assessment of hybrid natural bio composite for pipeline repair application using life cycle assessment approach. In: Polymer composite systems in pipeline repair, pp. 209–224. Elsevier (2023). https://doi.org/10.1016/B978-0-323-99340-1.00009-5

    Chapter  Google Scholar 

  29. Sanjay, M.R., Arpitha, G.R., Senthamaraikannan, P., Kathiresan, M., Saibalaji, M.A., Yogesha, B.: The hybrid effect of jute/kenaf/E-glass woven fabric epoxy composites for medium load applications: impact, inter-laminar strength, and failure surface characterization. J. Nat. Fibers 16(4), 600–612 (2019). https://doi.org/10.1080/15440478.2018.1431828

    Article  Google Scholar 

  30. Jha, K., Samantaray, B.B., Tamrakar, P.: A study on erosion and mechanical behavior of jute/e-glass hybrid composite. Mater. Today Proc. 5(2), 5601–5607 (2018). https://doi.org/10.1016/j.matpr.2017.12.151

    Article  Google Scholar 

  31. Muthuvel, M., Ranganath, G., Janarthanan, K., Srinivasan, K.: Characterization study of jute and glass fiber reinforced hybrid composite material. Int. J. Eng. Res. Technol. 2(4), 335–344 (2013)

    Google Scholar 

  32. Pegoretti, A., Fabbri, E., Migliaresi, C., Pilati, F.: Intraply and interply hybrid composites based on E-glass and poly(vinyl alcohol) woven fabrics: tensile and impact properties. Polym. Int. 53(9), 1290–1297 (2004). https://doi.org/10.1002/pi.1514

    Article  Google Scholar 

  33. Palanisamy, S., Vijayananth, K., Murugesan, T.M., Palaniappan, M., Santulli, C.: The prospects of natural fiber composites: a brief review. Int. J. Light. Mater. Manuf. (2024). https://doi.org/10.1016/j.ijlmm.2024.01.003

    Article  Google Scholar 

  34. ASTM D792:2020: Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement.

  35. ASTM D2290–19: Standard test methods for apparent tensile strength of ring or tubular plastics and reinforced plastics by split disk method, Philadelphia, PA: American Society for Testing and Materials,(2004).

  36. Braga, R.A., Magalhaes, P.A., Jr.: Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites. Mater. Sci. Eng. CC 1(56), 269–273 (2015). https://doi.org/10.1016/j.msec.2015.06.031

    Article  Google Scholar 

  37. ASTM E1131:2020: Standard Test Method for Compositional Analysis by Thermogravimetry, ASTM International, 100 Barr Harbour Drive PO box C-700 West Conshohocken, Pennsylvania 19428–2959, United States.

  38. Autar K. Kaw.: Mechanics of Composite Materials, Second Edition, CRC Press (2006).

  39. Chamis C. C.: Simplified composite micromechanics equations for strength, fracture toughness and environmental effects, Cleveland, Ohio, USA: NASA, Lewis Research Center; 1984.Technical Memorandum N84–27832

  40. Isaac, M.: Daniel. Engineering mechanics of composite materials, second edition, oxford university press, Ori lshai (2006)

    Google Scholar 

  41. Sengupta, A., Kumar, S.: Study of a model slope reinforced with jute. Recent Adv. Model. Landslides Debris Flows (2015). https://doi.org/10.1007/978-3-319-11053-0_24

    Article  Google Scholar 

  42. Shi, J., et al.: Jute yarn-wound composites: optimization of methods for evaluating mechanical properties and improvement of mechanical properties. J. Mater. Res. Technol. 21, 827–840 (2022). https://doi.org/10.1016/j.jmrt.2022.09.076

    Article  Google Scholar 

  43. ASTM D 2585: Standard Test Method for Preparation and Tension Testing of Filament-Wound Pressure Vessels, ASTM International (ASTM), Edition,(1968).

  44. ASTM D 1599–99: Standard test method for short-time hydraulic failure pressure of plastic pipe, tubing, and fittings. Philadelphia, PA: American Society for Testing and Materials,(1999).

  45. Martins, L.A.L., Bastian, F.L., Netto, T.A.: Reviewing some design issues for filament wound composite tubes. Mater. Des. 55, 242–249 (2014)

    Article  Google Scholar 

  46. Rafiee, R.: Apparent hoop tensile strength prediction of glass fiber-reinforced polyester pipes. J. Compos. Mater. 47(11), 1377–1386 (2012). https://doi.org/10.1177/0021998312447209

    Article  Google Scholar 

  47. Naseva, S., et al.: Mechanical properties of filament wound pipes: effects of winding angles. Quality of life 6(1–2), 10–15 (2015). https://doi.org/10.7251/QOL1501010N

    Article  Google Scholar 

  48. Krishna Pillai, S., Balasubramanian, K., Jesuretnam, B.R.: Experimental investigation on thermal behavior of Indian almond–Veli Karuvelam hybrid composites. J. Nat. Fibers 19(15), 11962–11973 (2022). https://doi.org/10.1080/15440478.2022.2048939

    Article  Google Scholar 

  49. Aisyah, H.A., Paridah, M.T., Sapuan, S.M., Khalina, A., Berkalp, O.B., Lee, S.H., Lee, C.H., Nurazzi, N.M., Ramli, N., Wahab, M.S., Ilyas, R.A.: Thermal properties of woven kenaf/carbon fibre-reinforced epoxy hybrid composite panels. Int. J. Polym. Sci. 11(2019), 1–8 (2019). https://doi.org/10.1155/2019/5258621

    Article  Google Scholar 

  50. Błachut, A., et al.: Influence of fiber tension during filament winding on the mechanical properties of composite pressure vessels. Compos. Struct. 304, 116337 (2023). https://doi.org/10.1016/j.compstruct.2022.116337

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank RCM Enterprises for fabricating the fixture for the split disk test. We would also like to thank the MIT World Peace University's Central Workshop for cutting the samples for the split disk test.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Methodology, Formal analysis and investigation, Writing—original draft preparation: Ganesh Devidas Shrigandhi. Resources, Supervision, Writing—review and editing: Basavaraj S. Kothavale.

Corresponding author

Correspondence to Ganesh D. Shrigandhi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrigandhi, G.D., Kothavale, B.S. Hoop tensile strength testing of glass/jute hybrid filament wound composite tubes. Int J Interact Des Manuf (2024). https://doi.org/10.1007/s12008-024-01876-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-024-01876-1

Keywords

Navigation