Skip to main content
Log in

Taguchi optimization of mask stereolithographic 3D printing parameters for tensile strengthening of functionally graded resins

  • Original Article
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) is a recently developed fabrication technology that allows the development of stronger and lighter components. The aim of this research is to study and examine the influence of various process parameters of masked stereolithography (MSLA) apparatus, namely, exposure time, intensity, and rest time on the tensile strength. The Taguchi design of experiments, L9 orthogonal array, was employed to determine the optimal conditions for printing the RESIONE M58 resin samples. Moreover, the analysis of variance (ANOVA) was utilized to obtain the significance of each parameter of MSLA process on the strength of the samples. According to the experimental results obtained from Taguchi method, the exposure time of 35 to 1.5 s, intensity of 80%, and rest time of 0.5 s were the best conditions for enhancement of the strength of resin. Exposure time was detected as the main factor that can control the tensile strength of 3D-printed samples with the highest significance of ~ 66%. It should be mentioned that the significance of errors or unconsidered items was found around 29%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

  1. Zhang, J., Xiao, P.: 3D printing of photopolymers. Polym. Chem. 9, 1530–1540 (2018). https://doi.org/10.1039/C8PY00157J

    Article  Google Scholar 

  2. Bagheri, A., Jin, J.: Photopolymerization in 3D printing. ACS Appl. Polym. Mater. 1, 593–611 (2019). https://doi.org/10.1021/acsapm.8b00165

    Article  Google Scholar 

  3. Thompson, M.K., Moroni, G., Vaneker, T., Fadel, G., Campbell, R.I., Gibson, I., Bernard, A., Schulz, J., Graf, P., Ahuja, B., Martina, F.: Design for additive manufacturing: Trends, opportunities, considerations, and constraints. CIRP Ann. 65, 737–760 (2016). https://doi.org/10.1016/j.cirp.2016.05.004

    Article  Google Scholar 

  4. Attaran, M.: The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus. Horiz. 60, 677–688 (2017). https://doi.org/10.1016/j.bushor.2017.05.011

    Article  Google Scholar 

  5. Kadic, M., Milton, G.W., van Hecke, M., Wegener, M.: 3D metamaterials. Nat. Rev. Phys. 1, 198–210 (2019). https://doi.org/10.1038/s42254-018-0018-y

    Article  Google Scholar 

  6. Zhu, J., Zhou, H., Wang, C., Zhou, L., Yuan, S., Zhang, W.: A review of topology optimization for additive manufacturing: Status and challenges. Chin. J. Aeronaut. 34, 91–110 (2021). https://doi.org/10.1016/j.cja.2020.09.020

    Article  Google Scholar 

  7. Ullah, A.M.M.S., D’Addona, D.M., Harib, K.H., Lin, T.: Fractals and additive manufacturing. Int. J. Autom. Technol. 10, 222–230 (2016). https://doi.org/10.20965/ijat.2016.p0222

    Article  Google Scholar 

  8. Jun, S.Y., Sanz-Izquierdo, B., Parker, E.A., Bird, D., McClelland, A.: Manufacturing considerations in the 3-D printing of fractal antennas. IEEE Trans. Compon. Packag Manuf. Technol. 7, 1891–1898 (2017). https://doi.org/10.1109/TCPMT.2017.2730366

    Article  Google Scholar 

  9. Wang, D., Dong, L., Gu, G.: 3D printed fractal metamaterials with tunable mechanical properties and shape reconfiguration. Adv. Funct. Mater. 33 (2023). https://doi.org/10.1002/adfm.202208849

  10. Wang, Y., Li, L., Hofmann, D., Andrade, J.E., Daraio, C.: Structured fabrics with tunable mechanical properties. Nature. 596, 238–243 (2021). https://doi.org/10.1038/s41586-021-03698-7

    Article  Google Scholar 

  11. Viccica, M., Galati, M., Calignano, F., Iuliano, L.: Design, additive manufacturing, and characterisation of a three-dimensional cross-based fractal structure for shock absorption. Thin-Walled Struct. 181, 110106 (2022). https://doi.org/10.1016/j.tws.2022.110106

    Article  Google Scholar 

  12. Tumbleston, J.R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A.R., Kelly, D., Chen, K., Pinschmidt, R., Rolland, J.P., Ermoshkin, A., Samulski, E.T., DeSimone, J.M.: Continuous liquid interface production of 3D objects. Sci. (80-). 347, 1349–1352 (2015). https://doi.org/10.1126/science.aaa2397

    Article  Google Scholar 

  13. Li, J., An, X., Liang, J., Zhou, Y., Sun, X.: Recent advances in the stereolithographic three-dimensional printing of ceramic cores: Challenges and prospects. J. Mater. Sci. Technol. 117, 79–98 (2022). https://doi.org/10.1016/j.jmst.2021.10.041

    Article  Google Scholar 

  14. Travieso-Rodriguez, J.A., Jerez-Mesa, R., Llumà, J., Gomez-Gras, G., Casadesus, O.: Comparative study of the flexural properties of ABS, PLA and a PLA–wood composite manufactured through fused filament fabrication. Rapid Prototyp. J. 27, 81–92 (2021). https://doi.org/10.1108/RPJ-01-2020-0022

    Article  Google Scholar 

  15. Sun, C., Fang, N., Wu, D.M., Zhang, X.: Projection micro-stereolithography using digital micro-mirror dynamic mask. Sens. Actuators Phys. 121, 113–120 (2005). https://doi.org/10.1016/j.sna.2004.12.011

    Article  Google Scholar 

  16. Ahmed, I., Sullivan, K., Priye, A.: Multi-resin masked stereolithography (MSLA) 3D printing for rapid and inexpensive prototyping of microfluidic chips with integrated functional components. Biosensors. 12, 652 (2022). https://doi.org/10.3390/bios12080652

    Article  Google Scholar 

  17. Zandi, M.D., Jerez-Mesa, R., Lluma-Fuentes, J., Jorba-Peiro, J., Travieso-Rodriguez, J.A.: Study of the manufacturing process effects of fused filament fabrication and injection molding on tensile properties of composite PLA-wood parts. Int. J. Adv. Manuf. Technol. 108, 1725–1735 (2020). https://doi.org/10.1007/s00170-020-05522-4

    Article  Google Scholar 

  18. Wu, H., Fahy, W.P., Kim, S., Kim, H., Zhao, N., Pilato, L., Kafi, A., Bateman, S., Koo, J.H.: Recent developments in polymers/polymer nanocomposites for additive manufacturing. Prog Mater. Sci. 111, 100638 (2020). https://doi.org/10.1016/j.pmatsci.2020.100638

    Article  Google Scholar 

  19. Huang, J., Qin, Q., Wang, J.: A review of stereolithography: Processes and systems. Processes. 8, 1138 (2020). https://doi.org/10.3390/pr8091138

    Article  Google Scholar 

  20. Taormina, G., Sciancalepore, C., Messori, M., Bondioli, F.: 3D printing processes for photocurable polymeric materials: Technologies, materials, and future trends. J. Appl. Biomater. Funct. Mater. 16, 151–160 (2018). https://doi.org/10.1177/2280800018764770

    Article  Google Scholar 

  21. Cosmi, F., Dal Maso, A.: A mechanical characterization of SLA 3D-printed specimens for low-budget applications. Mater. Today Proc. 32, 194–201 (2020). https://doi.org/10.1016/j.matpr.2020.04.602

    Article  Google Scholar 

  22. Cotabarren, I., Palla, C.A., McCue, C.T., Hart, A.J.: An assessment of the dimensional accuracy and geometry-resolution limit of desktop stereolithography using response surface methodology. Rapid Prototyp. J. 25, 1169–1186 (2019). https://doi.org/10.1108/RPJ-03-2019-0060

    Article  Google Scholar 

  23. Dizon, J.R.C., Espera, A.H., Chen, Q., Advincula, R.C.: Mechanical characterization of 3D-printed polymers. Addit. Manuf. 20, 44–67 (2018). https://doi.org/10.1016/j.addma.2017.12.002

    Article  Google Scholar 

  24. Maines, E.M., Porwal, M.K., Ellison, C.J., Reineke, T.M.: Sustainable advances in SLA/DLP 3D printing materials and processes. Green. Chem. 23, 6863–6897 (2021). https://doi.org/10.1039/D1GC01489G

    Article  Google Scholar 

  25. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T.Q., Hui, D.: Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part. B Eng. 143, 172–196 (2018). https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  Google Scholar 

  26. Multivariate control charts for short-run complex processes. In: IAENG Transactions on Engineering Sciences. pp. 265–272. CRC (2014)

  27. Chockalingam, K., Jawahar, N., Chandrasekhar, U.: Influence of layer thickness on mechanical properties in stereolithography. Rapid Prototyp. J. 12, 106–113 (2006). https://doi.org/10.1108/13552540610652456

    Article  Google Scholar 

  28. Chockalingam, K., Jawahar, N., Chandrasekar, U., Ramanathan, K.N.: Establishment of process model for part strength in stereolithography. J. Mater. Process. Technol. 208, 348–365 (2008). https://doi.org/10.1016/j.jmatprotec.2007.12.144

    Article  Google Scholar 

  29. Chockalingam, K., Jawahar, N., Ramanathan, K.N., Banerjee, P.S.: Optimization of stereolithography process parameters for part strength using design of experiments. Int. J. Adv. Manuf. Technol. 29, 79–88 (2006). https://doi.org/10.1007/s00170-004-2307-0

    Article  Google Scholar 

  30. Demir, S., Temiz, A., Pehlivan, F.: The investigation of printing parameters effect on tensile characteristics for triply periodic minimal surface designs by Taguchi. Polym. Eng. Sci. (2023). https://doi.org/10.1002/pen.26608

    Article  Google Scholar 

  31. Temiz, A.: The effects of process parameters on tensile characteristics and printing time for masked stereolithography components, analyzed using the response surface method. J. Mater. Eng. Perform. (2023). https://doi.org/10.1007/s11665-023-08617-7

    Article  Google Scholar 

  32. Ansari, T., Chandra, G., Gupta, P.K., Joshi, G., Rana, V.: Synthesis of pine needle cyanoethyl cellulose using Taguchi L25 orthogonal array. Ind. Crops Prod. 191, 115973 (2023). https://doi.org/10.1016/j.indcrop.2022.115973

    Article  Google Scholar 

  33. Gümüş, D., Gümüş, F.: Removal of hydroxychloroquine using engineered biochar from Algal biodiesel industry waste: Characterization and design of experiment (DoE). Arab. J. Sci. Eng. 47, 7325–7334 (2022). https://doi.org/10.1007/s13369-021-06235-w

    Article  Google Scholar 

  34. Chen, W.-H., Biswas, P.P., Ubando, A.T., Park, Y.-K., Ashokkumar, V., Chang, J.-S.: Design of experiment for hydrogen production from ethanol reforming: A state-of-the-art review. Fuel. 342, 127871 (2023). https://doi.org/10.1016/j.fuel.2023.127871

    Article  Google Scholar 

  35. Borra, N.D., Neigapula, V.S.N.: Parametric optimization for dimensional correctness of 3D printed part using masked stereolithography: Taguchi method. Rapid Prototyp. J. 29, 166–184 (2023). https://doi.org/10.1108/RPJ-03-2022-0080

    Article  Google Scholar 

  36. Alzyod, H., Ficzere, P.: Optimizing fused filament fabrication process parameters for quality enhancement of PA12 parts using numerical modeling and taguchi method. Heliyon. 9, e14445 (2023). https://doi.org/10.1016/j.heliyon.2023.e14445

    Article  Google Scholar 

  37. Maguluri, N., Suresh, G., Rao, K.V.: Assessing the effect of FDM processing parameters on mechanical properties of PLA parts using Taguchi method. J. Thermoplast Compos. Mater. 36, 1472–1488 (2023). https://doi.org/10.1177/08927057211053036

    Article  Google Scholar 

  38. Kumar, K., Singh, H.: Multi-objective optimization of fused deposition modeling for mechanical properties of biopolymer parts using the Grey-Taguchi method. Chin. J. Mech. Eng. 36, 30 (2023). https://doi.org/10.1186/s10033-023-00847-z

    Article  Google Scholar 

  39. Rathod, N.J., Chopra, M.K., Vidhate, U.S., Gurule, N.B., Saindane, U.V.: Investigation on the turning process parameters for tool life and production time using Taguchi analysis. Mater. Today Proc. 47, 5830–5835 (2021). https://doi.org/10.1016/j.matpr.2021.04.199

  40. Box, G.: Signal-to-noise ratios, performance criteria, and transformations. Technometrics. 30, 1 (1988). https://doi.org/10.2307/1270311

    Article  MathSciNet  Google Scholar 

  41. Canbolat, A.S., Bademlioglu, A.H., Arslanoglu, N., Kaynakli, O.: Performance optimization of absorption refrigeration systems using Taguchi, ANOVA and Grey Relational Analysis methods. J. Clean. Prod. 229, 874–885 (2019). https://doi.org/10.1016/j.jclepro.2019.05.020

    Article  Google Scholar 

  42. Chen, W.-H., Carrera Uribe, M., Kwon, E.E., Lin, K.-Y.A., Park, Y.-K., Ding, L., Saw, L.H.: A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM). Renew. Sustain. Energy Rev. 169, 112917 (2022). https://doi.org/10.1016/j.rser.2022.112917

    Article  Google Scholar 

  43. Dongguan Godsaid Technology Co: Ltd. website, www.resione.com/products/m58-gray-tough-abs-like-3d-printer-resin-1kg-1?_pos=1&_sid=718cf694a&_ss=r

  44. American Society for Testing and Materials: ASTM D4212-10: Standard Test Method for Viscosity by Dip-Type Viscosity Cups. ASTM International (2010)

  45. American Society for Testing and Materials: ASTM D2240-05: Standard Test Method for Rubber Property—Durometer Hardness. ASTM International (2005)

  46. American Society for Testing and Materials: ASTM D638-14: Standard Test Method for Tensile Properties of Plastics. ASTM International (2014)

  47. American Society for Testing and Materials: ASTM D790-10: Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International (2010)

  48. American Society for Testing and Materials: ASTM D256-10: Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. ASTM International (2010)

  49. American Society for Testing and Materials: ASTM D648-18: Standard Test Method for Deflection Temperature of Plastics under Flexural Load in the Edgewise Position. ASTM International (2018)

  50. American Society for Testing and Materials: ASTM D618-00: Standard Practice for Conditioning Plastics for Testing. ASTM International (2000)

  51. American Society for Testing and Materials: ASTM D638-22: Standard Test Method for Tensile Properties of Plastics. ASTM International (2022)

  52. Nurlatifah, A., Eriwati, Y.K., Indrani, D.J.: The effect of the curing time of an ultra-high intensity LED curing unit on diametral tensile strength of packable composite resin. J. Phys. Conf. Ser. 1073, 052007 (2018). https://doi.org/10.1088/1742-6596/1073/5/052007

    Article  Google Scholar 

  53. Bazyar, M.M., Tabary, S.A.A.B., Rahmatabdi, D., Mohammadi, K., Hashemi, R.: A novel practical method for the production of functionally graded materials by varying exposure time via photo-curing 3D printing. J. Manuf. Process. 103, 136–143 (2023). https://doi.org/10.1016/j.jmapro.2023.08.018

    Article  Google Scholar 

  54. Ariani, D., Herda, E., Eriwati, Y.K.: Effects of light intensity and curing time of the newest LED curing units on the diametral tensile strength of microhybrid composite resins. J. Phys. Conf. Ser. 884, 012106 (2017). https://doi.org/10.1088/1742-6596/884/1/012106

    Article  Google Scholar 

  55. Valizadeh, I., Tayyarian, T., Weeger, O.: Influence of process parameters on geometric and elasto-visco-plastic material properties in vat photopolymerization. Addit. Manuf. 72, 103641 (2023). https://doi.org/10.1016/j.addma.2023.103641

    Article  Google Scholar 

Download references

Acknowledgements

The schematic drawing of the dog-bone sample was crafted by Dr. Pakhshan Ahmadian, and we sincerely appreciate her valuable contribution.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Author 1: Investigation, Validation.

Author 2: Funding acquisition, Methodology.

Author 3: Writing – original draft, Project administration.

Author 4: Formal Analysis, Visualization.

Author 5: Conceptualization, Supervision, Writing – review & editing.

Corresponding author

Correspondence to Mehdi Shahedi Asl.

Ethics declarations

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi, H., Adib, A., Ahmadi, Z. et al. Taguchi optimization of mask stereolithographic 3D printing parameters for tensile strengthening of functionally graded resins. Int J Interact Des Manuf (2024). https://doi.org/10.1007/s12008-024-01839-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-024-01839-6

Keywords

Navigation