Skip to main content

Advertisement

Log in

Identification of residual stress intensity and its variation with heat source moving time in AISI304 steel pipe weldment: a significant failure investigation for structural integrity

  • Original Article
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

In order to prevent any potential setbacks in modern ultra-supercritical power plants, a numerical welding simulation was conducted on thin AISI304 steel plates and pipes. This simulation aimed to evaluate various factors such as transient temperature distribution, thermal cycle curves, residual stress states, and deformation in the welded pipe. The analysis employed a sequential couple method, incorporating the Element Birth and Death (EBD) technique to simulate the addition of filler metal. For the thermal analysis, a prescribed temperature was applied using DC3D8 element type for plates and DC3D20 for pipe weldment. Remarkably, the calculated temperature histories outside the weld pool closely matched numerical and experimental measurements found in the literature. The results exhibited an acceptable deviation for the AISI304 plate weldment. Initial measurements of residual stresses were focused on locations with high intensity. The maximum peaks were identified on the inside surface of the pipe weldment, revealing Tresca stresses of 434.76 MPa and von Mises stresses of 371.89 MPa at a distance of 1.05 mm from the weld centerline (WCL). Additionally, inside circumferential stresses were observed at 361.44 MPa Tresca and 311.67 MPa von Mises at a distance of 9.5 mm from the weld centerline at the specific moment when the weld torch was at \(\left\{ {{\text{t}} = {16}0\left( {\text{s}} \right)} \right\}\).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

WZ:

Weld zone

FZ:

Fusion zone

HAZ:

Heat affected zone

CGHAZ:

Coarse grain heat affected zone

FGHAZ:

Fine grain heat affected zone

WCL:

Weld center line

GHS-:

Gaussian Heat Source modal

SCC:

Stress corrosion cracking

SQBW:

Square butt weld

RS:

Residual stresses

WCL:

Weld center line

CAE:

Complete Abaqus Environment

AWI:

ABAQUS welding interface

NT 11:

Nodal temperature

PWT:

Prescribed weld temp. approach

TC:

Thermocouple

VHS:

Volumetric heat source modal

DEHS:

Double ellipsoidal Heat source modal

VGBW:

V-groove butt weld

WIRS:

Weld induced residual stresses

d :

Distance in (mm)

T :

Temperature in (℃)

\({x}_{0}\), \({y}_{0}\), \({z}_{0}\) :

Origin co-ordinate

\({T}_{0}\) :

Maximum temperature at origin in (℃)

\({T}_{m}\) :

Melting temperature in (℃)

\({k}_{x}\),\({k}_{y}\),\({k}_{z}\) :

Thermal conductivities in x, y, and z directions

Q :

Heat generation rate

\({h}_{C}\) :

Convective heat transfer coefficient

A :

Area

R :

Radiation

\(\varepsilon \) :

Emissivity

\(\rho \) :

Density of material

\(C\) :

Specific heat

T :

Temperature (℃)

\({T}_{\infty }\) :

Ambient temperature

\({Q}_{T}\) :

Total heat transfer due to convection and radiation

\({h}_{t}\) :

Total heat transfer coefficient

\({\varepsilon }_{i,j}\) :

Total strain rate

\({\varepsilon }_{i,j}^{e}\) :

Elastic strain rate

\({\varepsilon }_{i,j}^{p}\) :

Plastic strain rate

\({\varepsilon }_{i,j}^{vp}\) :

Viscous-plastic strain rate

\({\varepsilon }_{i,j}^{c}\) :

Creep strain rate

\({\varepsilon }_{i,j}^{th}\) :

Thermal strain rate (due to thermal expansion)

\({\varepsilon }_{i,j}^{tp}\) :

Transformation plasticity strain rate

\(\sigma \) :

Stress in (MPa)

\(\varepsilon \) :

Strain

µ :

Poisson’s ratio

References

  1. Terachi, T., Yamada, T., Miyamoto, T., Arioka, K.: SCC growth behaviors of austenitic stainless steels in simulated PWR primary water. J. Nucl. Mater. 426(1–3), 59–70 (2012)

    Article  ADS  CAS  Google Scholar 

  2. Féron, D., Herms, E., Tanguy, B.: Behavior of stainless steels in pressurized water reactor primary circuits. J. Nucl. Mater. 1, 364–377 (2012)

    Article  ADS  Google Scholar 

  3. Hans, H., Oliver, K.: Modeling of SCC initiation and propagation mechanisms in BWR environments. Nucl. Eng. Des. 241(12), 4893–4902 (2011)

    Article  Google Scholar 

  4. Li, G.F., Congleton, J.: Stress corrosion cracking of a low alloy steel to stainless steel transition weld in PWR primary waters at 292°C. Corros. Sci. 42(6), 1005–1021 (2000)

    Article  CAS  Google Scholar 

  5. Dean, D., Kazuo, O., Shoichi, K., Nobuyoshi, Y., Koichi, S.: Prediction of residual stresses in a dissimilar metal welded pipe with considering cladding, buttering and post weld heat treatment. Comput. Mater. Sci. 47(2), 398–408 (2009)

    Article  Google Scholar 

  6. Kumar, R., Anant, R., Ghosh, P.K., Kumar, A., Agrawal, B.P.: Influence of PC-GTAW parameters on the microstructural and mechanical properties of thin AISI 1008 steel joints. J. Mater. Eng. Perf. 25, 3756–3765 (2016). Joint using the finite element method. In: Metals (vol. 6, Issue 2). https://doi.org/10.3390/met6020028

  7. Anant, R., Ghosh, P.K.: Experimental investigation on transverse shrinkage stress and distortion of extra narrow and conventional gap dissimilar butt joint of austenitic stainless steel to low alloy steel. In: Proceedings of the International Conference on Mining, Material and Metallurgical Engineering 2014 Aug 11 (No. 161)

  8. Kingston, E., Stefanescu, D., Mahmoudi, A.H., Truman, C.E., Smith, D.J.: Novel applications of the deep-hole drilling technique for measuring through-thickness residual stress distributions (2006)

  9. ASTM E837–13a, Standard Test Method for Determining Residual Stresses by the Hole-drilling Strain-gauge Method (2014)

  10. Hutchings, M.T., Withers, P.J., Holden, T.M., Lorentzen, T.: Introduction to the Characterization of Residual Stress by Neutron Diffraction. Taylor & Francis, London (2005)

    Google Scholar 

  11. Fitzpatrick, M., Fry, A., Holdway, P., Kandil, F.A., Shackleton, J., Suominen, L.: NPL Good Practice Guide No. 52: Determination of Residual Stresses by X-ray Diffraction (2002)

  12. Fitzpatrick, M.E., Lodini, A.: Analysis of Residual Stress by Diffraction Using Neutron and Synchrotron Radiation. Taylor & Francis, London (2003)

    Book  Google Scholar 

  13. Meena, P., Anant, R.: On the interaction to thermal cycle curve and numerous theories of failure criteria for weld-induced residual stresses in AISI304 steel using element birth and death technique. J. Mater. Eng. Perform. 10, 1–9 (2023)

    Google Scholar 

  14. Seleš, K., Perić, M., Tonković, Z.: Numerical simulation of a welding process using a prescribed temperature approach. J. Constr. Steel Res. 1(145), 49–57 (2018)

    Article  Google Scholar 

  15. Taraphdar, P.K., Kumar, R., Pandey, C., Mahapatra, M.M.: Significance of finite element models and solid-state phase transformation on the evaluation of weld induced residual stresses. Met. Mater. Int. 17, 1–5 (2021)

    Google Scholar 

  16. Lindgren, L.E.: Finite element modeling and simulation of welding. Part 2: improved material modeling. J Therm Stress 24(3), 195–231 (2001). https://doi.org/10.1080/014957301300006380

    Article  Google Scholar 

  17. Lindgren, L.E.: Finite element modeling and simulation of welding. Part 3: efficiency and integration. J. Therm. Stress. 24(4), 305–334 (2001). https://doi.org/10.1080/01495730151078117

    Article  Google Scholar 

  18. Lindgren, L.E.: Numerical modelling of welding. Comput. Methods Appl. Mech. Eng. 195(48–49), 6710–6736 (2006). https://doi.org/10.1016/j.cma.2005.08.018

    Article  ADS  Google Scholar 

  19. Goldak, J., Akhlaghi, M.: Computational Welding Mechanics. Springer, New York (2005). ISBN: 9780387232874

  20. Y. Ueda, H. Murakawa, N. Ma, Computational Approach to Welding Deformation and Residual Stress, Sanpo Publications (2007). ISBN: 978-4-88318-034-9

  21. Rossini, N.S., Dassisti, M., Benyounis, K.Y., Olabi, A.G.: Methods of measuring residual stresses in components. Mater. Des. 35, 572–588 (2012)

    Article  Google Scholar 

  22. Totten, G., Howes, M., Inoue, T.: Handbook of Residual Stress and Deformation of Steel. ASM International, Materials Park (2002)

    Google Scholar 

  23. Taraphdar, P.K., Kumar, R., Giri, A., Pandey, C., Mahapatra, M.M., Sridhar, K.: Residual stress distribution in thick double-V butt welds with varying groove configuration, restraints and mechanical tensioning. J. Manuf. Process. 68, 1405–1417 (2021)

    Article  Google Scholar 

  24. Perić, M., Nižetić, S., Garašić, I., Gubeljak, N., Vuherer, T., Tonković, Z.: Numerical calculation and experimental measurement of temperatures and welding residual stresses in a thick-walled T-joint structure. J. Therm. Anal. Calorim. 141(1), 313–322 (2020)

    Article  Google Scholar 

  25. Barla, N.A., Ghosh, P.K., Kumar, V., Paraye, N.K., Anant, R., Das, S.: Simulated stress induced sensitization of HAZ in multipass weld of 304LN austenitic stainless steel. J. Manuf. Process. 62, 784–796 (2021)

    Article  Google Scholar 

  26. Yousefieh, M., Shamanian, M., Saatchi, A.: Influence of heat input in pulsed current GTAW process on microstructure and corrosion resistance of duplex stainless steel welds. J. Iron. Steel Res. Int. Int 18(9), 65–69 (2011)

    Article  CAS  Google Scholar 

  27. Akbari, D., Sattari-Far, I.: Effect of the welding heat input on residual stresses in butt-welds of dissimilar pipe joints. Int. J. Press. Vessels Pip. 86(11), 769–776 (2009)

    Article  CAS  Google Scholar 

  28. Ye, Y., Cai, J., Jiang, X., Dai, D., Deng, D.: Influence of groove type on welding-induced residual stress, deformation and width of sensitization region in a SUS304 steel butt welded joint. Adv. Eng. Softw. 86, 39–48 (2015)

    Article  Google Scholar 

  29. Radaj, D.: Welding Residual Stresses and Distortion Calculation and Measurement. DVS-Verlag GmbH, Düsseldorf (2003) ISBN 3871557919

  30. Lindgren, L.E.: Computational Welding Mechanics, Woodhead Publishing, UK (2007) ISBN 1845692217

  31. R6, Revision 4. Assessment of the Integrity of Structures Containing Defects. , EDF Energy, UK (2010)

  32. Venkatkumar, D., Ravindran, D.: 3D finite element simulation of temperature distribution, residual stress and distortion on 304 stainless steel plates using GTA welding. J. Mech. Sci. Technol. 30(1), 67–76 (2016)

    Article  Google Scholar 

  33. Perić, M., Tonković, Z., Karšaj, I., Stamenković, D.: A simplified engineering method for a T joint welding simulation. In: Thermal Science, VINCA Institute of Nuclear Sciences, 2018, (ISSN 03549836). https://doi.org/10.2298/TSCI171108020P (in press)

  34. Meena, P., Kumar, M., Singh, M., Kumar Shukla, D., Burela, R.G., Jhunjhunwala, P., Gupta, A., Pandey, C.: Numerical analysis of different SUS304 steel weld joint configurations using new prescribed temperature approach. Trans. Indian Inst. Metals 75(6), 1649–1668 (2022)

    Article  CAS  Google Scholar 

  35. Nguyen, K., Nasouri, R., Bennett, C., Matamoros, A., Li, J., Montoya, A.: Sensitivity of predicted temperature in a fillet weld T-joint to parameters used in welding simulation with prescribed temperature approach. In: Proceedings: Science in the Age of Experience 2017, Chicago, USA (2017)

  36. Taraphdar, P.K., Pandey, C., Mahapatra, M.M.: Finite element investigation of IGSCC-prone zone in AISI 304L multipass groove welds. Arch. Civil Mech. Eng. 20, 1–3 (2020)

    Article  Google Scholar 

  37. Taraphdar, P.K., Thakare, J.G., Pandey, C., Mahapatra, M.M.: Novel residual stress measurement technique to evaluate through thickness residual stress fields. Mater. Lett. 277, 128347 (2020)

    Article  CAS  Google Scholar 

  38. Meyghani B, Awang M. Welding Simulations Using ABAQUS. Springer: Berlin/Heidelberg, Germany; 2022.

  39. Singh, M.P., Meena, P.K., Arora, K.S., Kumar, R., Shukla, D.K.: Experimental, analytical and numerical, investigation of peak temperature and cooling rate in butt joint weld of mild steel. World J. Eng. 20(1), 29–42 (2023)

    Article  Google Scholar 

  40. Shubert, M., Pandheeradi, M.: An Abaqus extension for 3-D welding simulations. Mater. Sci. Forum 768–769, 690–696 (2014)

    Google Scholar 

  41. Elmesalamy, A.S., Abdolvand, H., Walsh, J.N., Francis, J.A., Suder, W., Williams, S., Li, L.: Measurement and modelling of the residual stresses in autogenous and narrow gap laser welded AISI grade 316L stainless steel plates. Int. J. Press. Vessel. Pip. 147, 64–78 (2016)

    Article  CAS  Google Scholar 

  42. Zhu, X.K., Chao, Y.J.: Effects of temperature-dependent material properties on welding simulation. Comput. Struct. 80(11), 967–976 (2002). https://doi.org/10.1016/S0045-7949(02)00040-8

    Article  Google Scholar 

  43. Perić, M., Tonković, Z., Garašić, I., Vuherer, T.: An engineering approach for a T-joint fillet welding simulation using simplified material properties. Ocean Eng. 128, 13–21 (2016). https://doi.org/10.1016/j.oceaneng.2016.10.006

    Article  Google Scholar 

  44. Robert, L.N.: Machine Design an Integrated Approach. Pearson Prentice Hall Publishers, Upper Saddle River (2006)

    Google Scholar 

  45. Radaj, D.: Heat Effects of Welding: Temperature Field, Residual Stress, Distortion. Springer, Berlin (2012)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge HOD MME, National Institute of Technology Bhopal INDIA for providing the required assistance. Further, the authors are highly gratified to Professor Rajesh Purohit (NIT Bhopal), Dr. C. Sasikumar (NIT Bhopal), for their valuable technical suggestions throughout this research work.

Author information

Authors and Affiliations

Authors

Contributions

PM: formal analysis, investigation, visualization, data curation, conceptualization, methodology, writing original draft, validation and editing. RA: resources, conceptualization, supervision, validation, review and editing.

Corresponding author

Correspondence to Ramkishor Anant.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, P., Anant, R. Identification of residual stress intensity and its variation with heat source moving time in AISI304 steel pipe weldment: a significant failure investigation for structural integrity. Int J Interact Des Manuf (2024). https://doi.org/10.1007/s12008-024-01754-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-024-01754-w

Keywords

Navigation