Skip to main content
Log in

Experimental and artificial neural network-based slurry erosion behavior evaluation of cast iron

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Slurry erosion is the surface degradation process occurring due to the mechanical interactions between the solid surface and the particles in the presence of a fluid medium. Due to the slurry erosion, machinery components in the industrial fields (like the hydraulic turbines, slurry pipelines, etc.) conditions undergo severe damage such that the machine parts couldn’t be repaired and should be replaced with the new ones sooner. The present research work described a slurry jet erosion test rig based on the modified venturi devices. Slurry erosion tests were conducted by varying the parameters such as the impingement angle, velocity, concentration, silica sand as the erosive particles with size, and with cast iron as the test coupon. Artificial neural network methodology based on machine learning and artificial intelligence was adopted to identify the dominating parameter among the chosen test parameters. The experimental and the artificial neural networks method results confirmed that the impingement angle was the most significant parameter for causing the material removal amongst the other parameters. Specifically, from the artificial neural network prediction, it was found that the contribution of parameters for erosion prediction was impingement angle (highest) > velocity > concentration > erosive particle size (lowest). It was also reported that with an increase in the velocity the erosion of the test coupon also increased. This investigation may help the materials scientists to accelerate their studies on cast iron material domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Kleis, I., Kulu, P.: Solid Particle Erosion: Occurrence, Prediction and Control. Springer Science & Business Media, USA (2007)

    Google Scholar 

  2. Finnie, I.: Erosion of surfaces by solid particles. Wear (1960). https://doi.org/10.1016/0043-1648(60)90055-7

    Article  Google Scholar 

  3. Karthik, S., Amarendra, H.J.: Slurry jet erosion test rig: a review of erosive particles induction methods and its test parameters. J. Bio Tribo Corros. 100, 200 (2020). https://doi.org/10.1007/s40735-020-00395-2

    Article  Google Scholar 

  4. Belchamber, R.M.: Process analysis | Acoustic emission. In: Encyclopedia of Analytical Science, 2nd edn., pp. 324–331. Elsevier (2005)

    Chapter  Google Scholar 

  5. Finnie, I.: 1962 Erosion by solid particles in a fluid stream. In: Symposium on Erosion and Cavitation. ASTM International. https://doi.org/10.1520/STP45081S

  6. Gnanavelu, A.B.: A geometry independent integrated method to predict erosion wear rates in a slurry environment. Doctoral dissertation, University of Leeds (2010). https://etheses.whiterose.ac.uk/4398/

  7. Compton, W.A., Steward, K.P.: Dust erosion of compressor materials: experience and prospects. ASME (1968). https://doi.org/10.1115/68-GT-55

    Article  Google Scholar 

  8. Wood, R.J.K., Wheeler, D.W.: Design and performance of a high velocity air–sand jet impingement erosion facility. Wear (1998). https://doi.org/10.1016/S0043-1648(98)00196-3

    Article  Google Scholar 

  9. Mann, B.S.: Laser surface treatment of hydro and thermal power plant components and their coatings: a review and recent findings. J. Mater. Eng Perfrom. (2015). https://doi.org/10.1007/s11665-015-1685-9

    Article  Google Scholar 

  10. Wood, R.J.K., Wharton, J.A., Speyer, A.J., Tan, K.S.: Investigation of erosion–corrosion processes using electrochemical noise measurements. Tribol. Int. (2002). https://doi.org/10.1016/S0301-679X(02)00054-3

    Article  Google Scholar 

  11. Clark, H.M.: The influence of the flow field in slurry erosion. Wear (1992). https://doi.org/10.1016/0043-1648(92)90122-O

    Article  Google Scholar 

  12. Rajahram, S.S.: Erosion-corrosion mechanisms of stainless steel UNS S31603. Doctoral dissertation, University of Southampton (2010). http://eprints.soton.ac.uk/id/eprint/195255

  13. Winkler, K.: Hydro-abrasive erosion: problems and solutions. In: IOP Conference Series: Earth and Environmental Science (2014). https://doi.org/10.1088/1755-1315/22/5/052022

  14. Benchaita, M.T.: Erosion of metal pipe by solid particles entrained in a liquid. Doctoral dissertation, Massachusetts Institute of Technology (1980). http://hdl.handle.net/1721.1/16096

  15. Turenne, S., Fiset, M., Masounave, J.: The effect of sand concentration on the erosion of materials by a slurry jet. Wear (1989). https://doi.org/10.1016/0043-1648(89)90116-6

    Article  Google Scholar 

  16. ASTM G76-04 2004 Standard test method for conducting erosion tests by solid particle impingement using gas jets (2004)

  17. Adin, M.Ş: Performances of cryo-treated and untreated cutting tools in machining of AA7075 aerospace aluminium alloy. Eur. Mech. Sci. 7(2), 70–81 (2023). https://doi.org/10.26701/ems.1270937

    Article  Google Scholar 

  18. Grewal, H.S., Agrawal, A., Singh, H.: Design and development of high-velocity slurry erosion test rig using CFD. J. Mater. Eng. Perform. (2013). https://doi.org/10.1007/s11665-012-0219-y

    Article  Google Scholar 

  19. Zu, J.B., Hutchings, I.M., Burstein, G.T.: Design of a slurry erosion test rig. Wear (1990). https://doi.org/10.1016/0043-1648(90)90093-P

    Article  Google Scholar 

  20. Thapa, B.: Sand erosion in hydraulic machinery. Doctoral dissertation, Norwegian University of Science and Technology (2004). http://hdl.handle.net/11250/231204

  21. Karthik, S., Amarendra, H.J., Rokhade, K.K., Prathap, M.S.: Experimental and numerical approach to predict slurry erosion in jet erosion test rig. Int. J. Refract. Met. Hard Mater. (2022). https://doi.org/10.1016/j.ijrmhm.2022.105807

    Article  Google Scholar 

  22. Verma, A., Singh, V.K.: Mechanical, microstructural and thermal characterization of epoxy-based human hair–reinforced composites. J. Test. Eval. 47(2), 1193–1215 (2019)

    Article  Google Scholar 

  23. Verma, A., Gaur, A., Singh, V.K.: Mechanical properties and microstructure of starch and sisal fiber biocomposite modified with epoxy resin. Mater. Perform. Charact. 6(1), 500–520 (2017)

    Google Scholar 

  24. Verma, A., Negi, P., Singh, V.K.: Experimental investigation of chicken feather fiber and crumb rubber reformed epoxy resin hybrid composite: mechanical and microstructural characterization. J. Mech. Behav. Mater. 27(3–4), 20180014 (2018). https://doi.org/10.1515/jmbm-2018-0014

    Article  Google Scholar 

  25. Verma, A., Joshi, K., Gaur, A., Singh, V.K.: Starch-jute fiber hybrid biocomposite modified with an epoxy resin coating: fabrication and experimental characterization. J. Mech. Behav. Mater. 27(5–6), 20182006 (2018). https://doi.org/10.1515/jmbm-2018-2006

    Article  Google Scholar 

  26. Rastogi, S., Singh, V.K., Verma, A.: Experimental response of nonwoven waste cellulose fabric–reinforced epoxy composites for high toughness and coating applications. Mater. Perform. Charact. 9(1), 151–172 (2020)

    Google Scholar 

  27. Verma, A., Singh, C., Singh, V.K., Jain, N.: Fabrication and characterization of chitosan-coated sisal fiber–Phytagel modified soy protein-based green composite. J. Compos. Mater. 53(18), 2481–2504 (2019). https://doi.org/10.1177/0021998319831748

    Article  Google Scholar 

  28. Singh, K., Singh, V.K., Chauhan, S., Jain, N., Verma, A.: Functionalized graphite–reinforced cross-linked poly (vinyl alcohol) nanocomposites for vibration isolator application: morphology, mechanical, and thermal assessment. Mater. Perform. Charact. 9(1), 215–230 (2020)

    Google Scholar 

  29. Bisht, N., Verma, A., Chauhan, S., Singh, V.K.: Effect of functionalized silicon carbide nano-particles as additive in cross-linked PVA based composites for vibration damping application. J. Vinyl Addit. Technol. 27(4), 920–932 (2021). https://doi.org/10.1002/vnl.21865

    Article  Google Scholar 

  30. Verma, A., Budiyal, L., Sanjay, M.R., Siengchin, S.: Processing and characterization analysis of pyrolyzed oil rubber (from waste tires)-epoxy polymer blend composite for lightweight structures and coatings applications. Polym. Eng. Sci. 59(10), 2041–2051 (2019). https://doi.org/10.1002/pen.25204

    Article  Google Scholar 

  31. Verma, A., Baurai, K., Sanjay, M.R., Siengchin, S.: Mechanical, microstructural, and thermal characterization insights of pyrolyzed carbon black from waste tires reinforced epoxy nanocomposites for coating application. Polym. Compos. 41(1), 338–349 (2020). https://doi.org/10.1002/pc.25373

    Article  Google Scholar 

  32. Chaurasia, A., Verma, A., Parashar, A., Mulik, R.S.: Experimental and computational studies to analyze the effect of h-BN nanosheets on mechanical behavior of h-BN/polyethylene nanocomposites. J. Phys. Chem. C 123(32), 20059–20070 (2019). https://doi.org/10.1021/acs.jpcc.9b05965

    Article  Google Scholar 

  33. Nagaraju, S.B., Sathyanarayana, K., Somashekara, M.K., Pradeep, D.G., Puttegowda, M., Verma, A.: Artificial neural networks for predicting mechanical properties of Al2219-B4C-Gr composites with multireinforcements. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. (2023). https://doi.org/10.1177/09544062231196038

    Article  Google Scholar 

  34. Agrawal, P.K., Sharma, P., Verma, A., Singh, V.K., Chaudhary, A.K., Chauhan, S.: Impact of graphite particle surface modification on the strengthening of cross-linked polyvinyl alcohol composites: A comprehensive investigation. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. (2023). https://doi.org/10.1177/14644207231188601

    Article  Google Scholar 

  35. Dogra, V., Kishore, C., Mishra, A., Gaur, A., Verma, A.: Sol-Gel preparation and wetting behaviour analysis of hydrophobic Zirconium based nano-coating: implications for solar panel coating. Chem. Eng. J. Adv. 15, 100507 (2023). https://doi.org/10.1016/j.ceja.2023.100507

    Article  Google Scholar 

  36. Arpitha, G.R., Jain, N., Verma, A.: Banana biofiber and glass fiber reinforced hybrid composite for lightweight structural applications: mechanical, thermal, and microstructural characterization. Biomass Convers. Biorefinery (2023). https://doi.org/10.1007/s13399-023-04300-y

    Article  Google Scholar 

  37. Bousser, E., Martinu, L., Klemberg-Sapieha, J.E.: Solid particle erosion mechanisms of protective coatings for aerospace applications. Surf. Coat. Technol. (2014). https://doi.org/10.1016/j.surfcoat.2014.08.037

    Article  Google Scholar 

  38. ISO 5167-4 2003. Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full—Part 4: venturi tubes (2003)

  39. Karthik, S., Amarendra, H.J.: Development of slurry jet erosion test rig–An aid to investigate erosion resistance of materials. Mater. Tod Proc. (2021). https://doi.org/10.1016/j.matpr.2020.09.674

    Article  Google Scholar 

  40. Ortega-Rivas, E.: Unit Operations of Particulate Solids: Theory and Practice. CRC Pres, Taylor & Francis, Boca Raton (2011)

    Google Scholar 

  41. Arpitha, G.R., Mohit, H., Madhu, P., Verma, A.: Effect of sugarcane bagasse and alumina reinforcements on physical, mechanical, and thermal characteristics of epoxy composites using artificial neural networks and response surface methodology. Biomass Convers. Biorefinery (2023). https://doi.org/10.1007/s13399-023-03886-7

    Article  Google Scholar 

  42. Thimmaiah, S.H., Narayanappa, K., Thyavihalli Girijappa, Y., Gulihonenahali Rajakumara, A., Hemath, M., Thiagamani, S.M.K., Verma, A.: An artificial neural network and Taguchi prediction on wear characteristics of Kenaf-Kevlar fabric reinforced hybrid polyester composites. Polym. Compos. 44(1), 261–273 (2023). https://doi.org/10.1002/pc.27043

    Article  Google Scholar 

  43. Sharma, A., Kumar, S.A., Kushvaha, V.: Effect of aspect ratio on dynamic fracture toughness of particulate polymer composite using artificial neural network. Eng. Fract. Mech. (2020). https://doi.org/10.1016/j.engfracmech.2020.106907

    Article  Google Scholar 

  44. Riazi, A., Türker, U.: The drag coefficient and settling velocity of natural sediment particles. Comput. Parct. Mech. (2019). https://doi.org/10.1007/s40571-019-00223-6

    Article  Google Scholar 

  45. Lee-Sullivan, P., Lu, G.: Erosion of impact-notched holes in GFRP composites. Wear (1994). https://doi.org/10.1016/0043-1648(94)90200-3

    Article  Google Scholar 

  46. Clark, H.M.: Slurry erosion: macro-and micro-aspects. In: Fundamentals of Tribology and Bridging the Gap Between the Macro-and Micro/Nanoscales. NATO Science Series. Springer (2001)

    Google Scholar 

  47. Handbook, A.S.M.: Friction, Lubrication, and Wear Technology. ASM International, Ohio (2017). https://doi.org/10.31399/asm.hb.v18.9781627081924

    Book  Google Scholar 

  48. Lin, H.C., Lin, K.M., Chen, Y.S., Yang, C.H.: Ion nitriding of Fe–30Mn–6Si–5Cr shape memory alloy: II. Erosion characteristics. Surf. Coat. Technol. 100, 200 (2005). https://doi.org/10.1016/j.surfcoat.2004.05.010

    Article  Google Scholar 

  49. Wood, R.J.K., Puget, Y., Trethewey, K.R., Stokes, K.: The performance of marine coatings and pipe materials under fluid-borne sand erosion. Wear (1998). https://doi.org/10.1016/S0043-1648(98)00231-2

    Article  Google Scholar 

  50. Manisekaran, T., Kamaraj, M., Sharrif, S.M., Joshi, S.V.: Slurry erosion studies on surface modified 13Cr-4Ni steels: effect of angle of impingement and particle size. J. Mater. Eng. Perform. (2007). https://doi.org/10.1007/s11665-007-9068-5

    Article  Google Scholar 

  51. Singh, H., Grewal, H.S., Bhandari, S.: Parametric study of slurry-erosion of hydroturbine steels with and without detonation gun spray coatings using taguchi technique. Metall. Mater. Trans. (2012). https://doi.org/10.1007/s11661-012-1148-y

    Article  Google Scholar 

  52. Alqallaf, J., Ali, N., Teixeira, J.A., Addali, A.: Solid particle erosion behaviour and protective coatings for gas turbine compressor blades—A review. Processes (2020). https://doi.org/10.3390/pr8080984

    Article  Google Scholar 

  53. Sandstrom, M.J.: The solid particle erosion of tungsten carbide in silicon carbide slurry. Master’s thesis, University of Utah, USA (2003). https://core.ac.uk/download/pdf/276267034.pdf

  54. Mishra, S., Singal, S.K., Khatod, D.K.: Sizing and quantity estimation for desilting tank of small hydropower projects—An analytical approach. Int. J. Green Energy (2013). https://doi.org/10.1080/15435075.2012.668864

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received from any organization for the submitted work and during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors equally contributed to conceptualization, methodology, writing, reviewing and editing.

Corresponding authors

Correspondence to P. Madhu or Akarsh Verma.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare by the authors.

Ethical approval

The authors hereby state that the present work is in compliance with the ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthik, S., Sharath, B.N., Madhu, P. et al. Experimental and artificial neural network-based slurry erosion behavior evaluation of cast iron. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01618-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01618-9

Keywords

Navigation