Skip to main content
Log in

Intelligent flexible assembly system for labor-intensive factory using the configurable virtual workstation concept

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Joining the digital transformation movement is no longer optional for manufacturing industries. Big corporations are transforming their automated manufacturing systems to improve their planning and operations. However, depending on their product type, a significant portion of the production sectors is labor-intensive or traditional, implying inadequate monitoring and control systems. Thus, they need more technology investment to be ready to join the digital transformation. This study intends to transform such systems by developing an intelligent monitoring and control system framework. We proposed an intelligent assembly system framework based on configurable virtual workstation technology. The solution was tested and implemented in a rolling stock factory. The implementation returns a promising development, enabling us to provide the directions for similar labor-intensive industries to step into the digital transformation era.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Raharno, S., Cooper, G: Jumping to Industry 4.0 Through Process Design and Managing Information for Smart Manufacturing: Configurable Virtual Workstation, pp. 47–51 (2020)

  2. Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., Yin, B.: Smart factory of industry 4.0: key technologies, application case, and challenges. IEEE Access 6, 6505–6519 (2017)

    Article  Google Scholar 

  3. Gruber, F.E.: Industry 4.0: A best practice project of the automotive industry. In: IFIP International Conference on Digital Product and Process Development Systems, pp. 36–40. Springer (2013)

  4. Cemernek, D., Gursch, H., Kern, R.: Big data as a promoter of industry 4.0: lessons of the semiconductor industry. In: 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), pp. 239–244. IEE (2017)

  5. Baheti, R., Gill, H.: Cyber-physical systems. Impact Control Technol. 12(1), 161–166 (2011)

    Google Scholar 

  6. Zhang, D., He, Z., Qian, Y., Wan, J., Li, D., Zhao, S.: Revisiting unknown RFID tag identification in large-scale internet of things. IEEE Wirel. Commun. 23(5), 24–29 (2016)

    Article  Google Scholar 

  7. Zhu, X.J.: Semi-supervised Learning Literature Survey (2005)

  8. Wuest, T., Weimer, D., Irgens, C., Thoben, K.-D.: Machine learning in manufacturing: advantages, challenges, and applications. Prod. Manuf. Res. 4(1), 23–45 (2016)

    Google Scholar 

  9. Wang, J., Ma, Y., Zhang, L., Gao, R.X., Wu, D.: Deep learning for smart manufacturing: methods and applications. J. Manuf. Syst. 48, 144–156 (2018)

    Article  Google Scholar 

  10. Park, C.Y., Kim, J.W., Kim, B., Lee, J.: Prediction for manufacturing factors in a steel plate rolling smart factory using data clustering-based machine learning. IEEE Access 8, 60890–60905 (2020)

    Article  Google Scholar 

  11. Tubaro, P., Casilli, A.A.: Micro-work, artificial intelligence and the automotive industry. J. Ind. Bus. Econ. 46(3), 333–345 (2019)

    Article  Google Scholar 

  12. Wu, D., Jennings, C., Terpenny, J., Gao, R.X., Kumara, S.: A comparative study on machine learning algorithms for smart manufacturing: tool wear prediction using random forests. J. Manuf. Sci. Eng. 139(7), 071018 (2017)

    Article  Google Scholar 

  13. Ansari, F., Erol, S., Sihn, W.: Rethinking human-machine learning in industry 4.0: How does the paradigm shift treat the role of human learning? Proced. Manuf. 23, 117–122 (2018)

    Google Scholar 

  14. Hartono, R., Raharno, S., Martawirya, Y.Y., Arthaya, B.: Development of product availability monitoring system in production unit in automotive component industry. IOP Publishing 319(1), 012014 (2018)

  15. Hartono, R., Raharno, S., Pane, M.Y., Zulfahmi, M., Yusuf, M., Yuwana, Y., Harja, H.B.: Development of Production Monitoring Systems on Labor-Intensive Manufacturing Industries, pp. 30–34 (2020)

  16. Sudhoff, M., Leineweber, S., Linsinger, M., Niemeyer, J.F., Kuhlenkötter, B.: Objective data acquisition as the basis of digitization in manual assembly systems. Procedia CIRP 93, 1176–1181 (2020)

    Article  Google Scholar 

  17. Telukdarie, A., Dube, T., Matjuta, P., Philbin, S.: The opportunities and challenges of digitalization for SMEe’s. Proced. Comput. Sci. 217, 689–698 (2023)

    Article  Google Scholar 

  18. Binte Rajah, R., de Fauconberg, A., Woeffray, O.: Future Readiness of SMEs: Mobilizing the SME Sector to Drive Widespread Sustainability and Prosperity. World Economic Forum (2021)

  19. Tarallo, A., Mozzillo, R., Di Gironimo, G., De Amicis, R.: A cyber-physical system for production monitoring of manual manufacturing processes. Int. J. Interact. Design Manuf. (IJIDeM) 12, 1235–1241 (2018)

    Article  Google Scholar 

  20. Strandhagen, J.W., Alfnes, E., Strandhagen, J.O., Vallandingham, L.R.: The fit of industry 4.0 applications in manufacturing logistics: a multiple case study. Adv. Manuf. 5(4), 344–358 (2017)

    Article  Google Scholar 

  21. Yurdakul, M., İç, Y.T., Celek, O.E.: Design of the Assembly Systems for Airplane Structures, pp. 521–541 (2021)

  22. Lee, J., Han, S.: Knowledge-based configuration design of a train bogie. J. Mech. Sci. Technol. 24(12), 2503–2510 (2010)

    Article  Google Scholar 

  23. Lee, J., Bagheri, B., Kao, H.-A.: A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015)

    Article  Google Scholar 

  24. Xu, X., Hua, Q.: Industrial big data analysis in smart factory: current status and research strategies. IEEE Access 5, 17543–17551 (2017)

    Article  Google Scholar 

  25. Hozdić, E.: Smart factory for industry 4.0: a review. Int. J. Modern Manuf. Technol. 7(1), 28–35 (2015)

    Google Scholar 

  26. Li, L.: China’s manufacturing locus in 2025: with a comparison of “Made-in-China 2025" and “Industry 4.0". Technol. Forecast. Soc. Change 135, 66–74 (2018)

  27. Tavassoli, S., Kianian, B., Larsson, T.C.: Manufacturing Renaissance: Return of Manufacturing to Western Countries, pp. 261–280 (2015)

  28. Schwab, K.: The Fourth Industrial Revolution (2017)

  29. Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., Sauer, O., Schuh, G., Sihn, W., Ueda, K.: Cyber-physical systems in manufacturing. Cirp Annals 65(2), 621–641 (2016)

    Article  Google Scholar 

  30. Biesinger, F., Meike, D., Kraß, B., Weyrich, M.: A digital twin for production planning based on cyber-physical systems: a case study for a cyber-physical system-based creation of a digital twin. Procedia CIRP 79, 355–360 (2019)

    Article  Google Scholar 

  31. Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE International Symposium on Object and Component-oriented Real-time Distributed Computing (ISORC), pp. 363–369. IEEE (2008) IEEE

  32. Shu, Z., Wan, J., Zhang, D., Li, D.: Cloud-integrated cyber-physical systems for complex industrial applications. Mob. Netw. Appl. 21(5), 865–878 (2016)

    Article  Google Scholar 

  33. Krugh, M., Mears, L.: A complementary cyber-human systems framework for industry 4.0 cyber-physical systems. Manuf. Lett. 15, 89–92 (2018)

    Article  Google Scholar 

  34. Lee, J., Kao, H.-A., Yang, S.: Service innovation and smart analytics for industry 4.0 and big data environment. Procedia Cirp 16, 3–8 (2014)

    Article  Google Scholar 

  35. Jazdi, N.: Cyber physical systems in the context of industry 4.0. In: 2014 IEEE International Conference on Automation, Quality and Testing, Robotics, pp. 1–4. IEE (2014)

  36. Mo, J.P.: The role of lean in the application of information technology to manufacturing. Comput. Ind. 60(4), 266–276 (2009)

    Article  Google Scholar 

  37. Amaral, A., Peças, P.: SMEs and industry 40: two case studies of digitalization for a smoother integration. Comput. Ind. 125, 103333 (2021)

    Article  Google Scholar 

  38. Amaral, A., Peças, P.: A framework for assessing manufacturing SMEs industry 4.0 maturity. Appl. Sci. 11(13), 6127 (2021)

    Article  Google Scholar 

  39. Charania, I., Li, X.: Smart farming: agriculture’s shift from a labor intensive to technology native industry. Internet Things 9, 100142 (2020)

    Article  Google Scholar 

  40. Seseni, L., Mbohwa, C.: Fourth industrial revolution and its impact on furniture manufacturing SMEs. In: Proceedings of the International Conference on Industrial Engineering and Operations Management, pp. 2572–2577 (2018)

  41. Kim, J.-C., Moon, I.-Y.: A study on smart factory construction method for efficient production management in sewing industry. J. Inf. Commun. Converg. Eng. 18(1), 61–68 (2020)

    Google Scholar 

  42. Gökalp, E., Gökalp, M.O., Eren, P.E.: Industry 4.0 revolution in clothing and apparel factories: apparel 4.0. Ind. 4.0 Manag. Inf. Syst. Perspect. 4, 169–184 (2018)

    Google Scholar 

  43. Schumacher, A., Nemeth, T., Sihn, W.: Roadmapping towards industrial digitalization based on an industry 4.0 maturity model for manufacturing enterprises. Proced. Cirp 79, 409–414 (2019)

    Article  Google Scholar 

  44. Ganzarain, J., Errasti, N.: Three stage maturity model in SME’s toward industry 4.0. J. Ind. Eng. Manag. (JIEM) 9(5), 1119–1128 (2016)

    Google Scholar 

  45. Unver, H.O.: An ISA-95-based manufacturing intelligence system in support of lean initiatives. Int. J. Adv. Manuf. Technol. 65(5), 853–866 (2013)

    Article  Google Scholar 

  46. Raharno, S., Hartono, R., Martawirya, Y.Y.: Implementing industry 4.0 in an Indonesia traditional assembly industry: Manufacturing system. In: Proceedings of the 16th International Conference on Automation Technology (2019)

  47. World, E.F.: Readiness for the Future of Production Report 2018. World Economic Forum (2018). http://www3.weforum.org/docs/FOP_Readiness_Report_2018.pdf. Accessed 12 Feb 2018

  48. Ward, M.J., Halliday, S.T., Foden, J.: A readiness level approach to manufacturing technology development in the aerospace sector: an industrial approach. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 226(3), 547–552 (2012)

    Article  Google Scholar 

  49. Eswaran, M., Bahubalendruni, M.R.: Challenges and opportunities on AR/VR technologies for manufacturing systems in the context of industry 4.0: a state of the art review. J. Manuf. Syst. 65, 260–278 (2022)

Download references

Acknowledgements

This research is supported by Lembaga Pengelola Dana Pendidikan Indonesia (Indonesia Endowment Fund for Education) under award number PRJ-64/LPDP/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sri Raharno.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raharno, S., Yosephine, V.S. Intelligent flexible assembly system for labor-intensive factory using the configurable virtual workstation concept. Int J Interact Des Manuf 18, 465–478 (2024). https://doi.org/10.1007/s12008-023-01567-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-023-01567-3

Keywords

Navigation