Skip to main content
Log in

Optimization of welding parameters for improving welded joints used in rolling stock structures using experimental and Taguchi technique

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Manufacturing involves cutting, machining, and joining processes for making all the mechanical structures in the world. Welding is a joining process where a lot of input variables are involved to achieve good mechanical properties and able to withstand load and stresses during its service. This study presents the effect of welding current, welding speed, and shielding gas flow rate on hardness and ultimate tensile strength in gas metal arc welding which is commonly used in car body structures in railway industries. The response of these process parameters has been analyzed and optimized using the Taguchi method. This study helps to understand root cause analysis of welding defects or to control the process parameters to improve welding joints used in rolling stock structures. From the experimental study it is observed that the optimum process parameters for ultimate tensile strength are 300 amp for welding current, 3 mm/min for welding speed and 10 L/min for gas flow rate for tensile strength and optimum value for hardness is 200 amp for welding current, 4 mm/min for welding speed and 20 L/min for gas flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

Abbreviations

BHN:

Brinell hardness number (MPa)

DOE:

Design of experiments

HAZ:

Heat effected zone

MIG:

Metal inert gas

CFD:

Computational fluid dynamics

TIG:

Tungsten inert gas

UTM:

Universal testing machine

FIE:

Fuel instruments and engineers

ANSI:

American Iron and Steel Institute

P:

Load (Kgf)

D:

Steel ball diameters (mm)

d:

Depression diameter (mm)

V:

Voltage (V)

I:

Current (amps)

R:

Resistance (Ω)

L:

Length of the plate (m)

B:

Breadth of the plate (m)

X:

Independent variables

y:

Uncertainty intervals

WR :

Dependent variable

U:

Function

S/N:

Stress versus number of cycles

yj :

Value of the characteristic

j:

Observation

R:

Number of observations

References

  1. Charles, C.I., Reyazul, H.K., Joseph, A., Sunday, A.L., Nicholas, O.N.: Effect of tungsten inert gas welding parameters on the performance of AISI 304 alloy steel using multi-response optimization technique. Weld. Int. 35(1–3), 45–55 (2021). https://doi.org/10.1080/09507116.2021.1958660

    Article  Google Scholar 

  2. Tsung, Y.K., Yen, T.L.: Effect of shielding gas flow rate and power Waveform on Nd:YAG laser welding of A5754-O aluminium alloy. Mater. Trans. 47(5), 1365–1373 (2006)

    Article  Google Scholar 

  3. Masahiro, O., Takashi, M., Kanto, M., Tadahisa, T., Kohei, F.: A new approach to controlling metal transfer by dynamic modification in gas composition of arc atmosphere: studies on pulsed gas MAG welding. Weld. Int. 34(10–12), 430–454 (2020). https://doi.org/10.1080/09507116.2021.1936927

    Article  Google Scholar 

  4. Harsh, S., Balram, R., Rudra, P.S.: A review paper on effect of input welding process parameters on structure and properties of weld in submerges arc welding process. Mater. Today: Proc. 26(2020), 1931–1935 (2020). https://doi.org/10.1016/j.matpr.2020.02.422

    Article  Google Scholar 

  5. Yemelyushin, A.N., Sychkov, A.B., Manin, V.P., Sheksheyev, M.A.: Investigation of the structure and mechanical properties of welded joints in steels of the K56 strength grade in different welding conditions. Weld. Int. 28(1), 70–74 (2013). https://doi.org/10.1080/09507116.2013.796658

    Article  Google Scholar 

  6. Mei, Y., Jingxiang, L., Jing, C., Yang, L., Honglang, Y.: Effect of welding speed on microstructure and corrosion resistance of Al–Li alloy weld joint. Mater. Corros. 71(2), 300–308 (2019). https://doi.org/10.1002/maco.201911068

    Article  Google Scholar 

  7. Wichan, C., Loeshpahn, S.: Heat input and shielding gas effects on the microstructure, mechanical properties and pitting corrosion of alternative low cost stainless steel grade 202. Res. Mater. 7(2020), 1–9 (2020). https://doi.org/10.1016/j.rinma.2020.100111

    Article  Google Scholar 

  8. Xin, Y.Z., Xiao, Q.Z., Ling, Q.G., Peng, H.H., Yong, F.R.: Influence of shielding gas on microstructure and properties of GMAW DSS2205 welded joints. Materials 14(10), 2671 (2021). https://doi.org/10.3390/ma14102671

    Article  Google Scholar 

  9. Ajit, H., Ashwani, D., Satpal, S.: Optimization of MIG welding process parameters to predict maximum yield strength in AISI 1040. Int. J. Mech. Eng. Robot. Res. 1(3), 203–213 (2012)

    Google Scholar 

  10. Chinakhov, D.A., Grigorieva, E.G., Mayorova, E.I., Kartsev, D.S.: The influence of shielding gas flow rate on the transfer frequency of electrode metal drops. In: International Scientific Practical Conference “Innovative Technologies in Engineering”, vol. 142, pp. 1–6 (2016). https://doi.org/10.1088/1757-899X/142/1/012005

  11. Xiaoyi, Y., Hui, C., Zongtao, Z., Chuang, C., Chenhzhu, Z.: Effect of shielding gas flow on welding process of laser-ac hybrid welding and MIG welding. J. Manuf. Process. 38(2019), 530–542 (2019). https://doi.org/10.1016/j.jmapro.2019.01.045

    Article  Google Scholar 

  12. Liu, S., Cui, B., Bai, D., Yan, S., Zhanh, H.: Effect of N2 shielding gas flow rate on microstructure and weld surface corrosion resistance of high nitrogen steel by laser-arc hybrid welding. Mater. Res. Expr. 6(8), 1–8 (2019). https://doi.org/10.1088/2053-1591/ab29b7

    Article  Google Scholar 

  13. Maros, V., Miroslav, S., Maria, D., Peter, J., Martin, S., Monika, V., Maros, M.: The effect of process parameters on the microstructure and mechanical properties of AW5083 aluminium laser weld joints. Metals 10(11), 1–22 (2020). https://doi.org/10.3390/met10111443

    Article  Google Scholar 

  14. Rahman, M.N.A., Zulkipli, N.H., Kasim, M.S., Jamli, M.R., Budi, E.: Impact of argon gas shielding flow rate on the hardness of weld joint. J. Adv. Manuf. Technol. 16(1), 1–10 (2022)

    Google Scholar 

  15. Ashish, G., Hardik, K., Lade, J., Kuldeep, K.S., Ummal, N.S., Kahtan, A.M.: Experimental investigation to analyse the mechanical and microstructure properties of 310 SS performed by TIG welding. Adv. Mat. Sci. Eng. 2022, 1–11 (2022). https://doi.org/10.1155/2022/1231843

    Article  Google Scholar 

  16. Leander, S., Klaus, S., Jean, P.B., Christina, J.: Effect of local gas flow in full penetration laser beam welding with high welding speeds. Appl. Sci. 10(5), 1–19 (2020). https://doi.org/10.3390/app10051867

    Article  Google Scholar 

  17. Anteneh, T.A., Gulam, M.S.A., Sagr, A., Abhilash, E., Moera, G.J., Vivek, P., Nazia, H.: Experimental investigation and parametric optimization of the tungsten inert gas welding process parameters of dissimilar metals. Materials 15(13), 1–30 (2022). https://doi.org/10.3390/ma15134426

    Article  Google Scholar 

  18. Rizvi, S.A., Tewari, S.P.: Effect of shielding gas flow rate on mechanical properties and microstructure of structural steel (IS2062) welds. Mech. Mech. Eng. 21(4), 1–14 (2017)

    Google Scholar 

  19. Viktor, A.R., Nikita, V.M., Vladislav, V.K., Vadim, S.T., Viktor, A.K., Anna, V.G., Vadim, Y.S., Anatoly, V.L., Antonina, I.K.: Study of melting methods by electric resistance welding of rails. Metals 12(12), 2135 (2022). https://doi.org/10.3390/met12122135

    Article  Google Scholar 

  20. Piotr, W., Mariusz, N., Stanislaw, K.: Experimental studies of welded joints in structures subjected to high impact vibrations using destructive and destructive methods. Materials (Basel) 16(5), 1886 (2023). https://doi.org/10.3390/ma16051886

    Article  Google Scholar 

  21. Takeshi, K., Toshiaki, M., Kentarou, M., Hideshi, O., Yoshihiko, I., Masakuni, E.: Application of friction stir welding to construction of railway vehicles. JSME Int. J. 47(3), 503–511 (2004)

    Google Scholar 

  22. Bekir, C., Behcet, G.: The effect of welding speed on mechanical and microstructural properties of 5754 AL (AlMg3) alloy joined by laser welding. Mater. Res. Expr. 5(8), 1–5 (2018)

    Google Scholar 

  23. Muyu, L., Dan, Y., Yingping, G., Yongchuan, D., Liu, Y.: Effect of welding speed and post quenching on the microstructure and mechanical properties of laser-welded B1500HS joints. Materials 2020(13), 1–16 (2020). https://doi.org/10.3390/ma13204645

    Article  Google Scholar 

  24. Panji, M., Baskoro, A.S., Widyianto, A.: Effect of welding current and welding speed on weld geometry and distortion in TIG welding of A36 mild steel pipe with V-groove joint. IOP Conf. Ser.: Mater. Sci. Eng. 694(2019), 1–8 (2019). https://doi.org/10.1088/1757-899X/694/1/012026

    Article  Google Scholar 

  25. Zhao, Y.Y., Zhang, Y.S., Hu, W.: Effect of welding speed on microstructure, hardness and tensile properties in laser welding of advanced high strength steel. Sci. Technol. Weld. Join. 18(7), 581–590 (2013). https://doi.org/10.1179/1362171813Y.0000000140

    Article  Google Scholar 

  26. Ahmad, J.K., Dhia, C.A., Abass, H.L.: Effect of metal inert gas welding parameters on the hardness and bending strength of carbon steel plates. AIP Conf. Proc. 2372(1), 1–8 (2021). https://doi.org/10.1063/5.0066092

    Article  Google Scholar 

  27. Morakabiyan, M., Farzadi, A., Alavi, Z.S.R.: Effect of welding speed on gas metal arc weld pool in commercially pure aluminium: theoretically and experimentally. Phys. Metall. Heat Treat. 59(2018), 82–92 (2018). https://doi.org/10.3103/S1067821218010121

    Article  Google Scholar 

  28. Hussian, Z., Muhammad, A.J., Anasyida, A.S., Suhaina, I.: Welding investigation and prediction of tensile strength of 304 stainless steel sheet metal joint by surface response methodology. Proc. Chem. 19(2016), 217–221 (2016). https://doi.org/10.1016/j.proche.2016.03.09

    Article  Google Scholar 

  29. Bitharas, I., McPherson, N.A., McGhie, W., Roy, D., Moore, A.J.: Visualization and optimisation of shielding gas coverage during gas metal arc welding. J. Mater. Process. Technol. 255(2018), 451–462 (2018). https://doi.org/10.1016/j.jmatprotec.2017.11.048

    Article  Google Scholar 

  30. Edwin, R.D.J., Jenkins, H.D.S.: A review on optimization of welding process. Proc. Eng. 38(2012), 544–554 (2012). https://doi.org/10.1016/j.proeng.2012.06.068

    Article  Google Scholar 

  31. Mohan, K.S., Rajesh, K.A., Pramod, R., Siva, S.N., Dhinakaran, V.: Testing, characterization and numerical prediction (uni-axial tension and bend test) of double side TIG welded SS321 plates for pressure vessel applications. Int. J. Press. Vessel. Pip. 197(2022), 104648 (2022). https://doi.org/10.1016/j.ijpvp.2022.104648

    Article  Google Scholar 

  32. Srinivasa, R.V., Brahma, R.K., Venkata, S.K.: Optimization of welding parameters of Ti 6al 4v cruciform shape weld joint to improve weld strength based on Taguchi method. Mater. Today: Proc. 5(2018), 4948–4957 (2018). https://doi.org/10.1016/j.matpr.2017.12.072

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Sachidananda.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salins, S.S., Kumar, D.I. & Sachidananda, H.K. Optimization of welding parameters for improving welded joints used in rolling stock structures using experimental and Taguchi technique. Int J Interact Des Manuf 18, 133–147 (2024). https://doi.org/10.1007/s12008-023-01429-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-023-01429-y

Keywords

Navigation