Skip to main content

Advertisement

Log in

A state-of-the-art review on robotics in waste sorting: scope and challenges

  • Review
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

An essential component of a waste management system is waste sorting. Correct sorting of waste is crucial for creating a clean environment for everyone, reducing pollution and reusing recyclable materials. Manual waste sorting can cause serious health issues to the workers due to various disease-causing agents present in the garbage. The use of robots in sorting of materials such as glass, paper, plastic, metals, etc., from other waste can facilitate the production of secondary raw materials as well as conserve energy and production costs. Robots can help in efficient sorting of waste and can work endlessly thus eliminating health hazard to labours. By using computer vision, artificial intelligence, and automation systems, both, the efficiency and accuracy of waste sorting can be increased. This paper showcases the recent studies related with implementation of robots in waste sorting for efficient recycling, algorithms, types of grippers and its advancements. Various studies have been discussed related to computer vision and comparison of various algorithms is also presented. Major challenges faced in implementation of robotic sorting on global scale and its future scope has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

IoT:

Internet of Things

IR:

Infrared

ML:

Machine learning

DL:

Deep learning

CNN:

Convolution Neural Network

R-CNN:

Region-based Convolution Neural Network

SSD:

Single Shot Multiproxy Detector

FCOS:

Fully Convolutional One-Stage object detection

KNN:

K nearest neighbour

SVM:

Support Vector Machine

SLAM:

Simultaneous Localization and Mapping

IoT:

Internet of Things

Dof:

Degree of freedom

SUS:

System Usability Scale

COCO dataset:

‘Common Objects in Context’ dataset

MAP:

Mean Average Precision

PET:

Polyethylene terephthalate

HDPE:

High Density Polyethylene

LDPE:

Low Density Polyethylene

PP:

Polypropylene

PS:

Polystyrene

GUI:

Graphical User Interface

LiDAR:

Light Detection and Ranging

DOF:

Degree of freedom

MSWM:

Municipal Solid Waste Management

References

  1. Guerrero, L.A., Maas, G., Hogland, W.: Solid waste management challenges for cities in developing countries. Waste Manag. (2013). https://doi.org/10.1016/j.wasman.2012.09.008

    Article  Google Scholar 

  2. Salim, H., Jackson, M., Stewart, R.A., Beal, C.D.: Drivers-pressures-state-impact-response of solid waste management in remote communities: a systematic and critical review. Clean. Waste Syst. 4, 100078 (2023). https://doi.org/10.1016/J.CLWAS.2023.100078

    Article  Google Scholar 

  3. Joshi, R., Ahmed, S.: Status and challenges of municipal solid waste management in India: a review. Cogent Environ. Sci. (2016). https://doi.org/10.1080/23311843.2016.1139434

    Article  Google Scholar 

  4. Gundupalli, S.P., Hait, S., Thakur, A.: A review on automated sorting of source-separated municipal solid waste for recycling. Waste Manag. 60, 56–74 (2017)

    Article  Google Scholar 

  5. Lange, J.-P.: Managing plastic waste sorting. Recycl. Dispos. Product Redes. (2021). https://doi.org/10.1021/acssuschemeng.1c05013

    Article  Google Scholar 

  6. Madsen, A.M., Raulf, M., Duquenne, P., et al.: Review of biological risks associated with the collection of municipal wastes. Sci. Total Environ. 791, 148287 (2021). https://doi.org/10.1016/J.SCITOTENV.2021.148287

    Article  Google Scholar 

  7. Black, M., Karki, J., Lee, A.C.K., et al.: The health risks of informal waste workers in the Kathmandu Valley: a cross-sectional survey. Public Health 166, 10–18 (2019). https://doi.org/10.1016/J.PUHE.2018.09.026

    Article  Google Scholar 

  8. Ihsanullah, I., Alam, G., Jamal, A., Shaik, F.: Recent advances in applications of artificial intelligence in solid waste management: a review. Chemosphere 309, 136631 (2022). https://doi.org/10.1016/J.CHEMOSPHERE.2022.136631

    Article  Google Scholar 

  9. Guo, H., Wu, S., Tian, Y., et al.: Application of machine learning methods for the prediction of organic solid waste treatment and recycling processes: a review. Bioresour. Technol. 319, 124114 (2021). https://doi.org/10.1016/J.BIORTECH.2020.124114

    Article  Google Scholar 

  10. Li, N., Chen, Y.: Municipal solid waste classification and real-time detection using deep learning methods. Urban Clim. 49, 101462 (2023). https://doi.org/10.1016/J.UCLIM.2023.101462

    Article  Google Scholar 

  11. Lachi Reddy, P., Sabiha, S., Jaswitha, K., et al.: Optimized garbage segregation and monitoring system. Mater Today Proc. (2021). https://doi.org/10.1016/J.MATPR.2021.07.256

    Article  Google Scholar 

  12. Lu, W., Chen, J.: Computer vision for solid waste sorting: a critical review of academic research. Waste Manag. 142, 29–43 (2022). https://doi.org/10.1016/J.WASMAN.2022.02.009

    Article  Google Scholar 

  13. Aarthi, R., Rishma, G.: A vision based approach to localize waste objects and geometric features exaction for robotic manipulation. Procedia Comput. Sci. 218, 1342–1352 (2023). https://doi.org/10.1016/j.procs.2023.01.113

    Article  Google Scholar 

  14. Iqbal, U., Barthelemy, J., Perez, P., Davies, T.: Edge-computing video analytics solution for automated plastic-bag contamination detection: a case from remondis. Sensors 22, 7821 (2022). https://doi.org/10.3390/S22207821

    Article  Google Scholar 

  15. Wu, T.W., Zhang, H., Peng, W., et al.: Applications of convolutional neural networks for intelligent waste identification and recycling: a review. Resour Conserv Recycl 190, 106813 (2023). https://doi.org/10.1016/J.RESCONREC.2022.106813

    Article  Google Scholar 

  16. Anitha, R., Maruthi, R., Sudha, S.: Automated segregation and microbial degradation of plastic wastes: a greener solution to waste management problems. Global Transit. Proc. 3, 100–103 (2022). https://doi.org/10.1016/J.GLTP.2022.04.021

    Article  Google Scholar 

  17. Chen, X., Huang, H., Liu, Y., et al.: Robot for automatic waste sorting on construction sites. Autom. Constr. 141, 104387 (2022). https://doi.org/10.1016/J.AUTCON.2022.104387

    Article  Google Scholar 

  18. Seredkin, A., Tokarev, M.P., Plohih, I.A., et al.: Development of a method of detection and classification of waste objects on a conveyor for a robotic sorting system. J. Phys. Conf. Ser. (2019). https://doi.org/10.1088/1742-6596/1359/1/012127

    Article  Google Scholar 

  19. Liu, C., Xie, N., Yang, X., et al.: A domestic trash detection model based on improved YOLOX. Sensors (2022). https://doi.org/10.3390/S22186974

    Article  Google Scholar 

  20. Guo, D., Cheng, L., Zhang, M., Sun, Y.: Garbage detection and classification based on improved YOLOV4. J. Phys. Conf. Ser. 2024, 012023 (2021)

    Article  Google Scholar 

  21. Ashwin, M., Alqahtani, A.S., Mubarakali, A.: Iot based intelligent route selection of wastage segregation for smart cities using solar energy. Sustain. Energy Technol. Assess 46, 101281 (2021). https://doi.org/10.1016/J.SETA.2021.101281

    Article  Google Scholar 

  22. Susha, B., Madhukara Shanbog, R., Hussain, S., et al.: Automatic segregation of waste using robotic arm (2021)

  23. Diya, S.Z., Proma, R.A., Islam, M.N., et al.: Developing an intelligent waste sorting system with robotic arm: a step towards green environment (2018)

  24. Suvarnamma, A., Pradeepkiran, J.A.: SmartBin system with waste tracking and sorting mechanism using IoT. Clean. Eng. Technol. 5, 100348 (2021). https://doi.org/10.1016/J.CLET.2021.100348

    Article  Google Scholar 

  25. Mondal, S., Das, S., Banerjee, S., Pal, K.: A smart automated garbage management system to replace human labour. In: ICDCS 2022—2022 6th International Conference on Devices, Circuits and Systems, pp. 237–241 (2022). https://doi.org/10.1109/ICDCS54290.2022.9780783

  26. Andeobu, L., Wibowo, S., Grandhi, S.: Artificial intelligence applications for sustainable solid waste management practices in Australia: a systematic review. Sci. Total Environ. 834, 155389 (2022). https://doi.org/10.1016/J.SCITOTENV.2022.155389

    Article  Google Scholar 

  27. Majchrowska, S., Mikołajczyk, A., Ferlin, M., et al.: Deep learning-based waste detection in natural and urban environments. Waste Manag. 138, 274–284 (2022). https://doi.org/10.1016/J.WASMAN.2021.12.001

    Article  Google Scholar 

  28. Liu, L., Ouyang, W., Wang, X., et al.: Deep learning for generic object detection: a survey. Int. J. Comput. Vis. 128, 261–318 (2020). https://doi.org/10.1007/s11263-019-01247-4

    Article  MATH  Google Scholar 

  29. John, A., Meva, D.: A comparative study of various object detection algorithms and performance analysis. Int. J. Comput. Sci. Open Access Res. Pap. (2020). https://doi.org/10.26438/ijcse/v8i10.158163

    Article  Google Scholar 

  30. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: Fully Convolutional One-Stage Object Detection

  31. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors (2022)

  32. Zhao, Z.-Q., Zheng, P., Xu, S., Wu, X.: Object detection with deep learning: a review (2018)

  33. Kulkarni, H.N., Kannamangalam, N., Raman, S.: Waste Object Detection and Classification

  34. Mitra, A., Li, Y.: Detection of waste materials using deep learning and image processing (2020)

  35. Bobulski, J., Kubanek, M.: Vehicle for plastic garbage gathering. In: International Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2021 (2021). https://doi.org/10.1109/ICECCME52200.2021.9591096

  36. Jabed, Md.R., Shamsuzzaman, Md.: YOLObin: non-decomposable garbage identification and classification based on YOLOv7. J. Comput. Commun. 10, 104–121 (2022). https://doi.org/10.4236/jcc.2022.1010008

    Article  Google Scholar 

  37. Liu, C., Xie, N., Yang, X., et al.: A domestic trash detection model based on improved YOLOX. Sensors (Basel) (2022). https://doi.org/10.3390/s22186974

    Article  Google Scholar 

  38. Chen, Q., Xiong, Q.: Garbage classification detection based on improved YOLOV4. J. Comput. Commun. 08, 285–294 (2020). https://doi.org/10.4236/jcc.2020.812023

    Article  Google Scholar 

  39. Rajendra, M., Rajesh, Y.A., Rahul Balaji, S., et al.: Waste and vehicle detection using YOLO. Int. J. Res. Appl. Sci. Eng. Technol. 10, 3587–3590 (2022). https://doi.org/10.22214/ijraset.2022.43124

    Article  Google Scholar 

  40. Yang, Z. A. YOLOv7 based visual detection of waste

  41. Sirawattananon, C., Muangnak, N., Pukdee W.: Designing of IoT-based smart waste sorting system with image-based deep learning applications. In: ECTI-CON 2021—2021 18th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology: Smart Electrical System and Technology, Proceedings, pp. 383–387 (2021). https://doi.org/10.1109/ECTI-CON51831.2021.9454826

  42. Costa, B.S., Bernardes, A.C.S., Pereira, J.V.A., et al.: Artificial intelligence in automated sorting in trash recycling (2019)

  43. Victor De Gea st, Vicente del Raspeig S, victordegea S, et al.: Domestic waste detection and grasping points for robotic picking up (2021). https://doi.org/10.1109/ICCV.2017.322

  44. Zhang, Q., Yang, Q., Zhang, X., et al.: A multi-label waste detection model based on transfer learning. Resour. Conserv. Recycl. 181, 106235 (2022). https://doi.org/10.1016/J.RESCONREC.2022.106235

    Article  Google Scholar 

  45. Bansal, S., Patel, S., Shah, I., et al.: AGDC: Automatic Garbage Detection and Collection (2019). https://doi.org/10.48550/arxiv.1908.05849

  46. Rahman, M.W., Islam, R., Hasan, A., et al.: Intelligent waste management system using deep learning with IoT. J. King Saud Univ. Comput. Inf. Sci. 34, 2072–2087 (2022). https://doi.org/10.1016/J.JKSUCI.2020.08.016

    Article  Google Scholar 

  47. Sakr, G.E., Mokbel, M., Darwich, A., et al.: Comparing deep learning and support vector machines for autonomous waste sorting. In: 2016 IEEE International Multidisciplinary Conference on Engineering Technology, IMCET 2016. Institute of Electrical and Electronics Engineers Inc., pp. 207–212 (2016)

  48. Institute of Electrical and Electronics Engineers. Oregon Section, Institute of Electrical and Electronics Engineers. Region 6, Institute of Electrical and Electronics Engineers 2018 IEEE Conference on Technologies for Sustainability (SusTech).

  49. Sun, L., Zhao, C., Yan, Z., et al.: A novel weakly-supervised approach for RGB-D-based nuclear waste object detection. IEEE Sens. J. 19, 3487–3500 (2019). https://doi.org/10.1109/JSEN.2018.2888815

    Article  Google Scholar 

  50. Xu, Z., Chen, M., Liu, C.: Object tactile character recognition model based on attention mechanism LSTM. In: Proceedings - 2020 Chinese Automation Congress, CAC 2020. Institute of Electrical and Electronics Engineers Inc., pp. 7095–7100 (2020)

  51. Guo, D., Liu, H., Fang, B., et al.: Visual affordance guided tactile material recognition for waste recycling. IEEE Trans. Autom. Sci. Eng. (2021). https://doi.org/10.1109/TASE.2021.3065991

    Article  Google Scholar 

  52. Kumar, S., Yadav, D., Gupta, H., et al.: A novel yolov3 algorithm-based deep learning approach for waste segregation: towards smart waste management. Electronics 10, 1–20 (2021). https://doi.org/10.3390/electronics10010014

    Article  Google Scholar 

  53. Aral, R.A., Keskin, S.R., Kaya, M., Haciömeroǧlu, M.: Classification of TrashNet dataset based on deep learning models. In: Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018. Institute of Electrical and Electronics Engineers Inc., pp. 2058–2062 (2019)

  54. Kumar, N.M., Mohammed, M.A., Abdulkareem, K.H., et al.: Artificial intelligence-based solution for sorting COVID related medical waste streams and supporting data-driven decisions for smart circular economy practice. Process Saf. Environ. Prot. 152, 482–494 (2021). https://doi.org/10.1016/J.PSEP.2021.06.026

    Article  Google Scholar 

  55. Sidharth, R., Rohit, P., Vishagan, S., et al.: Deep learning based smart garbage classifier for effective waste management, pp. 1086–1089 (2020). https://doi.org/10.1109/ICCES48766.2020.9137938

  56. Zhihong, C., Hebin, Z., Yanbo, W., et al.: A vision-based robotic grasping system using deep learning for garbage sorting. Chinese Control Conference, CCC 11223–11226 (2017). https://doi.org/10.23919/CHICC.2017.8029147

  57. Rahman, M.O., Hussain, A., Scavino, E., et al.: Intelligent computer vision system for segregating recyclable waste papers. Expert Syst. Appl. 38, 10398–10407 (2011). https://doi.org/10.1016/J.ESWA.2011.02.112

    Article  Google Scholar 

  58. Cheema, S.M., Hannan, A., Pires, I.M.: Smart waste management and classification systems using cutting edge approach. Sustainability (2022). https://doi.org/10.3390/su141610226

    Article  Google Scholar 

  59. Yang, Z., Li, D.: WasNet: a neural network-based garbage collection management system. IEEE Access 8, 103984–103993 (2020). https://doi.org/10.1109/ACCESS.2020.2999678

    Article  Google Scholar 

  60. Setiawan, W., Wahyudin, A., Widianto, G.R.: The use of scale invariant feature transform (SIFT) algorithms to identification garbage images based on product label. In: Proceeding - 2017 3rd International Conference on Science in Information Technology: Theory and Application of IT for Education, Industry and Society in Big Data Era, ICSITech 2017 2018-January, pp. 336–341 (2017). https://doi.org/10.1109/ICSITECH.2017.8257135

  61. Rahman, M.O., Hussain, A., Scavino, E., et al.: DNA computer based algorithm for recyclable waste paper segregation. Appl. Soft Comput. 31, 223–240 (2015). https://doi.org/10.1016/J.ASOC.2015.02.042

    Article  Google Scholar 

  62. Bui, T.D., Tseng, J.W., Tseng, M.L., et al.: Municipal solid waste management technological barriers: a hierarchical structure approach in Taiwan. Resour. Conserv. Recycl. 190, 106842 (2023). https://doi.org/10.1016/J.RESCONREC.2022.106842

    Article  Google Scholar 

  63. Lange, J.P.: Managing plastic waste-sorting, recycling, disposal, and product redesign. ACS Sustain. Chem. Eng. 9, 15722–15738 (2021). https://doi.org/10.1021/ACSSUSCHEMENG.1C05013/ASSET/IMAGES/LARGE/SC1C05013_0001.JPEG

    Article  Google Scholar 

  64. Gupta, N.S., Deepthi, V., Kunnath, M., et al.: Automatic Waste Segregation

  65. Mesina, M.B., de Jong, T.P.R., Dalmijn, W.L.: Automatic sorting of scrap metals with a combined electromagnetic and dual energy X-ray transmission sensor. Int. J. Miner. Process. 82, 222–232 (2007). https://doi.org/10.1016/j.minpro.2006.10.006

    Article  Google Scholar 

  66. IEEE Staff, IEEE Staff 2010 3rd International Congress on Image and Signal Processing.

  67. Dodbiba, G., Fujita, T.: Progress in separating plastic materials for recycling. Phys. Sep. Sci. Eng. 13, 165–182 (2004). https://doi.org/10.1080/14786470412331326350

    Article  Google Scholar 

  68. Fischler, M., Heavey, K., Kan, A., et al.: Robotic Waste Sorting Major Qualifying Project (2019)

  69. Bahri Razali, Z., Zern Yi, K.: Final Year Project. 2012–2013. https://doi.org/10.13140/RG.2.1.2521.9044

  70. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision. Institute of Electrical and Electronics Engineers Inc., pp. 2980–2988 (2017)

  71. Wang, Z., Li, H., Yang, X.: Vision-based robotic system for on-site construction and demolition waste sorting and recycling. J. Build. Eng. (2020). https://doi.org/10.1016/j.jobe.2020.101769

    Article  Google Scholar 

  72. Kim, J.Y., Pyo, H.R., Jang, I., et al.: Tomato harvesting robotic system based on Deep-ToMaToS: deep learning network using transformation loss for 6D pose estimation of maturity classified tomatoes with side-stem. Comput. Electron. Agric. (2022). https://doi.org/10.1016/j.compag.2022.107300

    Article  Google Scholar 

  73. Basso, A., Hlaváč, V., Hůlka, J., et al.: Towards Intelligent autonomous sorting of unclassified nuclear wastes. Procedia Manuf. 11, 389–396 (2017). https://doi.org/10.1016/j.promfg.2017.07.122

    Article  Google Scholar 

  74. Engelen, B., De Marelle, D., Diaz-Romero, D.J., et al.: Techno-economic assessment of robotic sorting of aluminium scrap. In: Procedia CIRP. Elsevier B.V., pp. 152–157 (2022)

  75. Sgarbossa, F., Romsdal, A., Johannson, F.H., Krogen, T.: Robot picker solution in order picking systems: An ergo-zoning approach. In: IFAC-PapersOnLine. Elsevier B.V., pp. 10597–10602 (2020)

  76. Chen, X., Huang, H., Liu, Y., et al.: Robot for automatic waste sorting on construction sites. Autom. Constr. (2022). https://doi.org/10.1016/j.autcon.2022.104387

    Article  Google Scholar 

  77. Leveziel, M., Laurent, G.J., Haouas, W., et al.: A 4-DoF parallel robot with a built-in gripper for waste sorting. IEEE Robot. Autom. Lett. 7, 9834–9841 (2022). https://doi.org/10.1109/LRA.2022.3192582

    Article  Google Scholar 

  78. Bobulski, J., Kubanek, M.: Autonomous robot for plastic waste classification, pp. 371–376 (2021)

  79. Cong, V.D., Hanh, L.D., Phuong, L.H., Duy, D.A.: Design and development of robot arm system for classification and sorting using machine vision. FME Trans. (2022). https://doi.org/10.5937/fme2201181C

    Article  Google Scholar 

  80. Ndambani, M.A., Fang, T., Saniie, J.: Autonomous robotic arm for object sorting and motion compensation using Kalman filter

  81. Tai, K., El-Sayed, A.R., Shahriari, M., et al.: State of the art robotic grippers and applications. Robotics 5 (2016)

  82. Hernandez, J., Sunny, M.S.H., Sanjuan, J., et al.: Current designs of robotic arm grippers: a comprehensive systematic review. Robotics 12, 5 (2023). https://doi.org/10.3390/robotics12010005

    Article  Google Scholar 

  83. Kokate, S., Pawar, A.: Design of a shoulder mounted collaborative robot for household tasks. Int. Res. J. Eng. Technol. (2020)

  84. Sparrman, B., du Pasquier, C., Thomsen, C., et al.: Printed silicone pneumatic actuators for soft robotics. Addit. Manuf. 40, 101860 (2021). https://doi.org/10.1016/J.ADDMA.2021.101860

    Article  Google Scholar 

  85. Sadeghian, R., Shahin, S., Sareh, S.: Vision-based self-adaptive gripping in a trimodal robotic sorting end-effector. IEEE Robot. Autom. Lett. 7, 2124–2131 (2022). https://doi.org/10.1109/LRA.2022.3140793

    Article  Google Scholar 

  86. Kiyokawa, T., Takamatsu, J., Koyanaka, S.: Challenges for future robotic sorters of mixed industrial waste: a survey. IEEE Trans. Autom. Sci. Eng. (2022). https://doi.org/10.1109/TASE.2022.3221969

    Article  Google Scholar 

  87. Cheah, C.G., Chia, W.Y., Lai, S.F., et al.: Innovation designs of industry 4.0 based solid waste management: machinery and digital circular economy. Environ. Res. 213, 113619 (2022). https://doi.org/10.1016/J.ENVRES.2022.113619

    Article  Google Scholar 

Download references

Acknowledgements

Not available.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

The first draft of the manuscript was written by AS, CA and AP. AS, GA and SK performed the conceptualization of the research idea and reviewed the edited manuscript. All authors have made a substantial contribution to the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ashish Pawar.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satav, A.G., Kubade, S., Amrutkar, C. et al. A state-of-the-art review on robotics in waste sorting: scope and challenges. Int J Interact Des Manuf 17, 2789–2806 (2023). https://doi.org/10.1007/s12008-023-01320-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-023-01320-w

Keywords

Navigation