Skip to main content
Log in

EBSD analysis of microstructure between liquid core forging process and traditional forging process

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Assab 718 was a kind of plastic die steel and the daughter grains were the tempered sorbite after normalizing and high-temperature tempering. The daughter grains had a specific orientation relationship with the parent grains, which could be reconstructed based on the electron backscattered diffraction tests. The evolution laws from the parent grains to the daughter grains under the two forging processes were compared by HKL Channel 5. The results showed that the parent grains were finer and more evenly distributed under the new process. The recrystallization volume fraction of those grains was less than that under the traditional one. From the parent grains to the daughter grains, the orientation of the maximum texture intensity and the maximum section location was changed under the liquid core forging process. While the orientation of the maximum texture intensity of the parent grains under the traditional one was a common S-texture and that of the daughter grains was not obvious. The geometrically necessary dislocation density was calculated based on the kernel average misorientation. This study is necessary to reveal the micro-deformation mechanism of the new and the traditional forging processes. It can provide theoretical guidance for implementing the liquid core forging process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yongqiang, W., Wen, F., Kaikun, W.: Numerical and physical simulation of the forging process with liquid core. Int. J. Adv. Manuf. Technol. 119(1–2), 1167–1177 (2021). https://doi.org/10.1007/s00170-021-08310-w

    Article  Google Scholar 

  2. Yongqiang, W., Zhiren, S., Kaikun, W.: The simulation of the preparation of the ingot with liquid core. Int. J. Adv. Manuf. Technol. 116(3–4), 931–940 (2021). https://doi.org/10.1007/s00170-021-07538-w

    Article  Google Scholar 

  3. Yongqiang, W., Kaikun, W.: The ultra-high temperature forging process based on DEFORM-3D simulation. Int. J. Interact. Des. Manuf. 16(1), 99–108 (2022). https://doi.org/10.1007/s12008-021-00811-y

    Article  Google Scholar 

  4. Hirt, G., Shimahara, H., Seidl, I., Küthe, F., Abel, D., Schönbohm, A., Kopp, R.: Semi-solid forging of 100Cr6 and X210CrW12 steel. CIRP Ann-Manuf. Technol. 1(54), 257–260 (2005). https://doi.org/10.1016/S0007-8506(07)60097-3

    Article  Google Scholar 

  5. Koc, M., Vazquez, V., Witulski, T., Altan, T.: Application of the finite element method to predict material flow and defects in the semi-solid forging of A356 aluminum alloys. J. Mater. Process. Technol. 59(1), 106–112 (1996). https://doi.org

    Article  Google Scholar 

  6. Nyyssönen, T., Isakov, M., Peura, P.: Iterative determination of the Orientation Relationship between Austenite and Martensite from a large amount of Grain Pair Misorientations. Metall. Mater. Trans. A-Phys Metall. Mater. Sci. 47(6), 2587–2590 (2016). https://doi.orghttps://doi.org/10.1007/s11661-016-3462-2

    Article  Google Scholar 

  7. Miyamoto, G., Iwata, N., Takayama, N., Furuhara, T.: Mapping the parent austenite orientation reconstructed from the orientation of martensite by EBSD and its application to ausformed martensite. Acta Mater. 58(19), 6393–6403 (2010). https://doi.org

    Article  Google Scholar 

  8. Abbasi, M., Nelson, T., Sorensen, W., Carl, D., Wei, L.: An approach to prior austenite reconstruction. Mater. Charact. 66, 1–8 (2012). https://doi.org/10.1016/j.matchar.2012.01.010

    Article  Google Scholar 

  9. Cayron, C., Baur, A., Logé, R.: Intricate morphologies of laths and blocks in low-carbon martensitic steels. Mater. Des. 154, 81–95 (2018). https://doi.org/10.1016/j.matdes.2018.05.033

    Article  Google Scholar 

  10. Wu, B.B., Wang, X.L., Wang, Z.Q., Zhao, J.X., Jin, Y.H., Wang, C.S., Shang, C.J., Misra, R.D.K.: New insights from crystallography into the effect of refining prior austenite grain size on transformation phenomenon and consequent mechanical properties of ultra-high strength low alloy steel. Mater. Sci. Eng. A-Struct Mater. Prop. Microstruct. Process. 745, 126–136 (2019). https://doi.org/10.1016/j.msea.2018.12.057

    Article  Google Scholar 

  11. Wu, B.B., Wang, Z.Q., Wang, X.L., Xu, W.S., Shang, C.J.: Toughening of martensite matrix in high strength low alloy steel: regulation of variant pairs. Mater. Sci. Eng. A-Struct Mater. Prop. Microstruct. Process. 759, 430–436 (2019). https://doi.org

    Article  Google Scholar 

  12. Wang, Z., Song, T.T., Wang, X.L., Shang, C.J., Liu, K., Chen, B.: Orientation reconstruction of original austenite in covariant transformation structure and its application in austenite twinning. Int. J. Eng. Sci. 40(08), 945–953 (2018). https://doi.org/10.13374/j.issn2095-9389.2018.08.008

    Article  Google Scholar 

  13. Guo, Z., Lee, C.S., Morris, J.W.: On coherent transformations in steel. Acta Mater. 52(19), 5511–5518 (2004). https://doi.org/10.1016/j.actamat.2004.08.011

    Article  Google Scholar 

  14. Cayron, C., Artaud, B., Briottet, L.: Reconstruction of parent grains from EBSD data. Mater. Charact. 57(4), 386–401 (2006). https://doi.org/10.1016/j.matchar.2006.03.008

    Article  Google Scholar 

  15. Wu, J., Zhang, W.Z.: The understanding and calculation of misorientation between variants based on the phase transformation. Acta Metall. Sin. 45(08), 897–905 (2009)

    Google Scholar 

  16. Flower, H.M., Lindley, T.C.: Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures. Mater. Sci. Technol. 16(1), 26–40 (2000). https://doi.org

    Article  Google Scholar 

  17. Takayama, N., Miyamoto, G., Furuhara, T.: Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel. Acta Mater. 60(5), 2387–2396 (2012). https://doi.org/10.1016/j.actamat.2011.12.018

    Article  Google Scholar 

  18. Celada, C., Sietsma, J., Santofimia, M.J.: The role of the austenite grain size in the martensitic transformation in low carbon steels. Mater. Des. 167, 107625 (2019). https://doi.org

    Article  Google Scholar 

  19. He, G., Peng, T., Jiang, B., Hu, X., Liu, Y., Wu, C.: Recrystallization Behavior and Texture Evolution in Low Carbon Steel during Hot Deformation in Austenite/Ferrite Region,Steel Res. Int.92(10),2100047-n/a(2021). https://doi.org/10.1002/srin.202100047

  20. Mackenzie, J.K.: The distribution of rotation axes in a random aggregate of cubic crystals. Acta Mater. 12(2), 223–225 (1964). https://doi.org/10.1016/0001-6160(64)90191-9

    Article  Google Scholar 

  21. Hu, Z.Q., Wang, K.K., Yang, Y.: Deformation behavior and evolution of Austenite microstructure and texture during Hot Compression of 5CrNiMoV Steel. Metallography Microstruct. Anal. 9(4), 576–587 (2020). https://doi.orghttps://doi.org/10.1007/s13632-020-00662-1

    Article  Google Scholar 

  22. Xu, H., Tian, T., Zhang, J., Niu, L., Zhu, H., Wang, X., Zhang, Q.: Hot deformation behavior of the 25CrMo4 Steel using a Modified Arrhenius Model. Materials. 15(8), 2820 (2022). https://doi.org

    Article  Google Scholar 

  23. Bao, J.H.: The EBSD Investigation on Microstructure Evolution in Fe-32%Ni Alloy during Multi-Axial forging. Appl. Mech. Mater. 260, 26–28 (2010). https://doi.org/10.1016/j.intermet.2014.12.003

    Article  Google Scholar 

  24. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Mater. 42(2), 475–487 (1994). https://doi.org

    Article  Google Scholar 

  25. Nix, W.D., Gao, H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids. 46(3), 411–425 (1998). https://doi.org

    Article  MATH  Google Scholar 

  26. Gao, H., Huang, Y., Nix, W.D., Hutchinson, J.W., Theory: J. Mech. Phys. Solids. 47(6), 1239–1263 (1999). https://doi.org

    Article  MathSciNet  Google Scholar 

  27. Kubin, L.P., Mortensen, A.: Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues. Scr. Mater. 48(2), 119–125 (2003). https://doi.org/10.1016/S1359-6462(02)00335-4

    Article  Google Scholar 

  28. Hughes, D.A., Hansen, N., Bammann, D.J.: Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations. Scr. Mater. 48(2), 147–153 (2003). https://doi.org

    Article  Google Scholar 

  29. Calcagnotto, M., Ponge, D., Demir, E., Raabe, D.: Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater. Sci. Eng. A-Struct Mater. Prop. Microstruct. Process. 527(10), 2738–2746 (2010). https://doi.org

    Article  Google Scholar 

  30. Jiang, J., Britton, T.B., Wilkinson, A.J.: Evolution of dislocation density distributions in copper during tensile deformation. Acta Mater. 61(19), 7227–7239 (2013). https://doi.org/10.1016/j.actamat.2013.08.027

    Article  Google Scholar 

  31. Liu, H.H., Fu, P.X., Liu, H.W., Sun, C., Du, N.Y., Li, D.Z.: Effect of vanadium micro-alloying on the microstructure evolution and mechanical properties of 718H pre-hardened mold steel. J. Mater. Sci. Technol. 35(11), 2526–2536 (2019). https://doi.org/10.1016/j.jmst.2019.04.033

    Article  Google Scholar 

  32. Liu, H.H., Fu, P.X., Liu, H.W., Sun, C., Sun, M.Y., Li, D.Z.: A novel large cross-section quenching and tempering mold steel matching excellent strength–hardness–toughness properties. Mater. Sci. Eng. A-Struct Mater. Prop. Microstruct. Process. 737, 274–285 (2018). https://doi.org/10.1016/j.msea.2018.09.046

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely thank the National Key Research and Development Program of China (2017YFB0701803)for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Kai-kun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yong-qiang, W., Yong-shan, W. & Kai-kun, W. EBSD analysis of microstructure between liquid core forging process and traditional forging process. Int J Interact Des Manuf 17, 1653–1664 (2023). https://doi.org/10.1007/s12008-023-01224-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-023-01224-9

Keywords

Navigation