Skip to main content
Log in

Outdoing best-fit approaches for the manufacturing accuracy evaluation of complete denture bases

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

To compare the reference geometry approach to the best-fit (or superimposition) approach in the estimation of geometric accuracy relevant to the digital and the analog workflow to fabricate a complete denture. Starting from a model of an edentulous maxilla, the two measuring methodologies were tested to estimate the geometric accuracy of the intaglio surface of the complete dentures fabricated by CNC milling and injection molding. Eight areas of interest were defined at the intaglio surface of the denture base; a sensitivity analysis determined the minimum number of measuring points to calculate a reliable \({\overline{\Delta }}\) error value. A repeatability analysis was performed to assess the consistency of this experimental reference geometry approach with respect to the clinic acceptable requirements. For the analog workflow, the comparison of the reference geometry results to the best-fit results showed a − 76 (post-dam) ÷ 169 µm (right flange) range of the \({\overline{\Delta }}\) mean value for the reference geometry approach, to be compared to − 15 (left crest) ÷ 146 µm (right tuberosity) range for the best-fit approach. For the digital workflow, the same comparison showed a − 21 (left crest) ÷ 51 µm (left flange) range for the reference geometry approach, compared to a − 20 (left crest) ÷ 23 µm (left flange) for the best-fit approach. The best-fit approach results in an underestimation of mean \({\overline{\Delta }}\) error values and their distribution over the entire prosthesis. The reference geometry approach correctly estimates error values while focusing on the identification of sources of errors in the manufacturing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maeda, Y., Minoura, M., Tsutsumi, S., Okada, M., Nokubi, T.: A CAD/CAM system for removable denture: Part I: fabrication of complete dentures. Int. J. Prosthodontics. 7, 17–21 (1994)

    Google Scholar 

  2. Kawahata, N., Ono, H., Nishi, Y., Hamano, T., Nagaoka, E.: Trial of duplication procedure for complete dentures by CAD/CAM. J. Oral Rehabil. 24, 540–548 (1997). https://doi.org/10.1046/j.1365-2842.1997.00522.x

    Article  Google Scholar 

  3. Sarment, D.P., Sukovic, P., Clinthorne, N.: Accuracy of implant placement with a stereolithographic surgical guide. Int. J. Oral Maxillofac. Implants 18, 571–577 (2003)

    Google Scholar 

  4. Mörmann, W.H.: The origin of the Cerec method: a personal review of the first 5 years. Int. J. Comput. Dent. 7, 11–24 (2004)

    Google Scholar 

  5. Ettinger, R.L., Beck, J.D., Jakobsen, J.: Removable prosthodontic treatment needs: a survey. J. Prosthet. Dent. 51, 419–427 (1984). https://doi.org/10.1016/0022-3913(84)90235-X

    Article  Google Scholar 

  6. Grant, G.T., Campbell, S.D., Masri, R.M., Andersen, M.R.: Glossary of digital dental terms. J. Prosthodont. 25, S2–S9 (2016). https://doi.org/10.1111/jopr.12532

    Article  Google Scholar 

  7. Bahman, A.S., Iannuzzo, F.: Computer-aided engineering simulations. In: Wide Bandgap Power Semiconductor Packaging. pp. 199–223. Elsevier (2018)

  8. Sun, Y., Lü, P., Wang, Y.: Study on CAD&RP for removable complete denture. Comput. Methods Programs Biomed. 93, 266–272 (2009). https://doi.org/10.1016/j.cmpb.2008.10.003

    Article  Google Scholar 

  9. Wu, J., Gao, B., Tan, H., Chen, J., Tang, C., Tsui, C.: A feasibility study on laser rapid forming of a complete titanium denture base plate. Lasers Med. Sci. 25, 309–315 (2010). https://doi.org/10.1007/s10103-008-0603-x

    Article  Google Scholar 

  10. Goodacre, C.J., Garbacea, A., Naylor, W.P., Daher, T., Marchack, C.B., Lowry, J.: CAD/CAM fabricated complete dentures: concepts and clinical methods of obtaining required morphological data. J. Prosthet. Dent. 107, 34–46 (2012). https://doi.org/10.1016/S0022-3913(12)60015-8

    Article  Google Scholar 

  11. Meneghello, R., Savio, G., Raffaeli, R., Cerardi, A., Turchetto, M., Planchenstainer, L.: An integrated methodology for the functional design of dental prosthesis. Int. J. Interact. Design Manuf. (IJIDeM). 7, 103–114 (2013). https://doi.org/10.1007/s12008-012-0169-5

    Article  Google Scholar 

  12. Inokoshi, M., Kanazawa, M., Minakuchi, S.: Evaluation of a complete denture trial method applying rapid prototyping. Dent. Mater. J. 31, 40–46 (2012). https://doi.org/10.4012/dmj.2011-113

    Article  Google Scholar 

  13. Srinivasan, M., Cantin, Y., Mehl, A., Gjengedal, H., Müller, F., Schimmel, M.: CAD/CAM milled removable complete dentures: an in vitro evaluation of trueness. Clin. Oral Invest. 21, 2007–2019 (2017). https://doi.org/10.1007/s00784-016-1989-7

    Article  Google Scholar 

  14. Goodacre, B.J., Goodacre, C.J., Baba, N.Z., Kattadiyil, M.T.: Comparison of denture tooth movement between CAD–CAM and conventional fabrication techniques. J. Prosthet. Dent. 119, 108–115 (2018). https://doi.org/10.1016/j.prosdent.2017.02.009

    Article  Google Scholar 

  15. Kattadiyil, M.T., Jekki, R., Goodacre, C.J., Baba, N.Z.: Comparison of treatment outcomes in digital and conventional complete removable dental prosthesis fabrications in a predoctoral setting. J. Prosthet. Dent. 114, 818–825 (2015). https://doi.org/10.1016/j.prosdent.2015.08.001

    Article  Google Scholar 

  16. AlHelal, A., AlRumaih, H.S., Kattadiyil, M.T., Baba, N.Z., Goodacre, C.J.: Comparison of retention between maxillary milled and conventional denture bases: a clinical study. J. Prosthet. Dent. 117, 233–238 (2017). https://doi.org/10.1016/j.prosdent.2016.08.007

    Article  Google Scholar 

  17. Wang, C., Shi, Y.-F., Xie, P.-J., Wu, J.-H.: Accuracy of digital complete dentures: a systematic review of in vitro studies. J. Prosthet. Dent. 125, 249–256 (2021). https://doi.org/10.1016/j.prosdent.2020.01.004

    Article  Google Scholar 

  18. Lo Russo, L., Lo Muzio, E., Troiano, G., Salamini, A., Zhurakivska, K., Guida, L.: Accuracy of trial complete dentures fabricated by using fused deposition modeling 3-dimensional printing: an in vitro study. J. Prosthet. Dent. (2021). https://doi.org/10.1016/j.prosdent.2021.07.021

    Article  Google Scholar 

  19. Lo Russo, L., Guida, L., Zhurakivska, K., Troiano, G., Chochlidakis, K., Ercoli, C.: Intaglio surface trueness of milled and 3D-printed digital maxillary and mandibular dentures: a clinical study. J. Prosthet. Dent. (2021). https://doi.org/10.1016/j.prosdent.2021.05.003

    Article  Google Scholar 

  20. Yoshidome, K., Torii, M., Kawamura, N., Shimpo, H., Ohkubo, C.: Trueness and fitting accuracy of maxillary 3D printed complete dentures. J. Prosthodontic Res. (2021). https://doi.org/10.2186/jpr.JPR_D_20_00240

    Article  Google Scholar 

  21. Herpel, C., Tasaka, A., Higuchi, S., Finke, D., Kühle, R., Odaka, K., Rues, S., Lux, C.J., Yamashita, S., Rammelsberg, P., Schwindling, F.S.: Accuracy of 3D printing compared with milling: a multi-center analysis of try-in dentures. J. Dent. 110, 103681 (2021). https://doi.org/10.1016/j.jdent.2021.103681

    Article  Google Scholar 

  22. Unkovskiy, A., Schmidt, F., Beuer, F., Li, P., Spintzyk, S., Kraemer Fernandez, P.: Stereolithography vs. direct light processing for rapid manufacturing of complete denture bases: an in vitro accuracy analysis. J. Clin. Med. 10, 1070 (2021). https://doi.org/10.3390/jcm10051070

    Article  Google Scholar 

  23. Gao, H., Yang, Z., Lin, W., Tan, J., Chen, L.: The effect of build orientation on the dimensional accuracy of 3D-printed mandibular complete dentures manufactured with a Multijet 3D printer. J. Prosthodont. 30, 684–689 (2021). https://doi.org/10.1111/jopr.13330

    Article  Google Scholar 

  24. Hsu, C.-Y., Yang, T.-C., Wang, T.-M., Lin, L.-D.: Effects of fabrication techniques on denture base adaptation: an in vitro study. J. Prosthet. Dent. 124, 740–747 (2020). https://doi.org/10.1016/j.prosdent.2020.02.012

    Article  Google Scholar 

  25. Cook, R.J.: Response of the oral mucosa to denture wearing. J. Dent. 19, 135–147 (1991). https://doi.org/10.1016/0300-5712(91)90001-F

    Article  Google Scholar 

  26. Ishinabe, S.: Mucosal thickness of the denture foundation under occlusal force. Nihon Hotetsu Shika Gakkai Zasshi 35, 111–124 (1991). https://doi.org/10.2186/jjps.35.111

    Article  Google Scholar 

  27. Deng, K., Chen, H., Zhao, Y., Zhou, Y., Wang, Y., Sun, Y.: Evaluation of adaptation of the polylactic acid pattern of maxillary complete dentures fabricated by fused deposition modelling technology: a pilot study. PLoS ONE 13, e0201777 (2018). https://doi.org/10.1371/journal.pone.0201777

    Article  Google Scholar 

Download references

Funding

No financial support was provided for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Maltauro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciocca, L., Maltauro, M., Cimini, V. et al. Outdoing best-fit approaches for the manufacturing accuracy evaluation of complete denture bases. Int J Interact Des Manuf 17, 1389–1397 (2023). https://doi.org/10.1007/s12008-022-01162-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-01162-y

Keywords

Navigation