Skip to main content

Advertisement

Log in

Review on multi-objective optimization of FDM process parameters for composite materials

  • Review
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

3D printing is a process used in many industrial sectors like automobile, aircraft, buildings and several medical fields to fabricate products.Fused deposition modeling is a type of 3D printing processes also known as fused filament manufacturing. Two main response parameters must be considered when using FDM to manufacture parts: Part strength and dimensional accuracy. Though FDM is a popular method for producing complicated geometric products in a less time, it has limitations, including poor mechanical characteristics and dimensional accuracy. An extensive review is carried to know the influence of following process variables on mechanical characteristics such as Thickness of layers, Printing speed, Extrusion Temperature, Infill Density, Infill Patterns, nozzle Diameter, raster Angle, build orientation. It is crucial to choose the best possible combination of process parameters. The FDM process parameters can be optimized using a variety of strategies. As a result, a comprehensive review has been presented on pre-processing to examine the characteristics for printed parts. The two components of study are critical for increasing overall characteristics, i.e., improving functional utility and enriching the uses of FDM printed parts. The current report meant to provide basic assistance and guidance to researchers working on the subject of FDM Process Parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gardan, J.: Smart materials in additive manufacturing: state of the art and trends. Virtual Phys. Prototyp. 14, 1–18 (2019)

    Article  Google Scholar 

  2. Qader, I., Kök, M., Dagdelen, F., Aydogdu, Y.: A review of smart materials researches and applications. El-Cezeri Fen ve Mühendislik Dergisi 6, 755–788 (2019)

    Google Scholar 

  3. Mustapha, K.B., Metwalli, K.M.: A review of fused deposition modelling for 3D printing of smart polymeric materials and composites. Eur. Polym. J 156, 110591 (2021)

    Article  Google Scholar 

  4. Kumaresan, R., Samykano, M., Kadirgama, K., Harun, W.S.W., Rahman, P.D.M.M.: Fused deposition modeling: process, materials, parameters, properties, and applications. Int. J. Adv. Manuf. Technol. 120 (2022). https://doi.org/10.1007/s00170-022-08860-7

  5. Wang, Y., Xu, Z., Wu, D., Bai, J.: Current status and prospects of polymer powder 3D printing technologies. Materials 13, 2406 (2020)

    Article  Google Scholar 

  6. Mwema, F.M., Akinlabi, E.T.: Basics of fused deposition modelling (FDM). In: Mwema, F.M., Akinlabi, E.T. (eds.) Fused Deposition Modeling: Strategies for Quality Enhancement, pp. 1–15. Springer, Cham (2020)

    Chapter  Google Scholar 

  7. Dizon, J.R.C., Gache, C.C.L., Cascolan, H.M.S., Cancino, L.T., Advincula, R.C.: Post-processing of 3D-printed polymers, technologies, p. 9 (2021). https://doi.org/10.3390/technologies9030061

  8. Cano-Vicent, A., Tambuwala, M.M., Hassan, S.S., Barh, D., Aljabali, A.A.A., Birkett, M., Arjunan, A., Serrano-Aroca, Á.: Fused deposition modelling: Current status, methodology, applications and future prospects. Addit. Manuf. 47, 102378 (2021)

    Google Scholar 

  9. Bardot, M., Schulz, M.D.: Biodegradable poly(lactic acid) nanocomposites for fused deposition modeling 3D printing. Nanomaterials (Basel) 10, 2567 (2020)

    Article  Google Scholar 

  10. Chiulan, I., Frone, A.N., Brandabur, C., Panaitescu, D.M.: Recent advances in 3D printing of aliphatic polyesters. Bioengineering (Basel) 5, 2 (2017)

    Article  Google Scholar 

  11. Wasti, S., Adhikari, S.: Use of biomaterials for 3D printing by fused deposition modeling technique: a review. Front. Chem. 8, 315 (2020)

    Article  Google Scholar 

  12. Peng, A.H., Wang, Z.M.: Researches into influence of process parameters on FDM parts precision. Appl. Mech. Mater. 34–35, 338–343 (2010)

    Article  Google Scholar 

  13. Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater. Des. 31, 287–295 (2010)

    Article  Google Scholar 

  14. Vishwas, M., Basavaraj, C.K., Vinyas, M.: Experimental investigation using Taguchi method to optimize process parameters of fused deposition modeling for ABS and nylon materials. Mater. Today Proc. 5, 7106–7114 (2018)

    Article  Google Scholar 

  15. Medibew, T.M.: A comprehensive review on the optimization of the fused deposition modeling process parameter for better tensile strength of PLA-printed parts. Hindawi Adv. Mater. Sci. Eng. 5490831 (2022). https://doi.org/10.1155/2022/5490831

  16. Yang, T.-C., Yeh, C.-H.: Morphology and mechanical properties of 3D printed wood fiber/polylactic acid composite parts using fused deposition modeling (FDM): the effects of printing speed. Polymers 12, 1334 (2020)

    Article  Google Scholar 

  17. Sbriglia, L.R., Baker, A.M., Thompson, J.M., Morgan, R.V., Wachtor, A.J., Bernardin, J.D.: Embedding sensors in FDM plastic parts during additive manufacturing. In: Mains, M. (ed.) Topics in Modal Analysis & Testing, vol. 10, pp. 205–214. Springer, Cham (2016)

    Chapter  Google Scholar 

  18. Kuznetsov, V.E., Solonin, A.N., Tavitov, A., Urzhumtsev, O., Vakulik, A.: Increasing strength of FFF three-dimensional printed parts by influencing on temperature-related parameters of the process. Rapid Prototyp. J. 26, 107–121 (2020)

    Article  Google Scholar 

  19. Coogan, T.J., Kazmer, D.O.: Bond and part strength in fused deposition modeling. Rapid Prototyp. J. 23, 414–422 (2017)

    Article  Google Scholar 

  20. Wang, L., Gramlich, W.M., Gardner, D.J.: Improving the impact strength of Poly(lactic acid) (PLA) in fused layer modeling (FLM). Polymer. 114, 242–248 (2017)

    Article  Google Scholar 

  21. Liu, Z., Wang, Y., Wu, B., Cui, C., Yu, G., Yan, C.: A critical review of 3D printing technology in manufacturing polylactic acid parts. Int. J. Adv. Manuf. Technol. 102, 2877–2889 (2019)

    Article  Google Scholar 

  22. Shanmugam, V., Pavan, M.V., Babu, K., Karnan, B.: Fused deposition modeling based polymeric materials and their performance: a review. Polym. Compos. 42, 5656–5677 (2021)

    Article  Google Scholar 

  23. Zhou, X., Hsieh, S.-J., Sun, Y.: Experimental and numerical investigation of the thermal behaviour of polylactic acid during the fused deposition process. Virtual Phys. Prototyp. 12, 221–233 (2017)

    Article  Google Scholar 

  24. Vinaykumar, S.V.J., Jatti, S., Patel, A.P., Vijaykumar, S., Jatti,: A study on effect of fused deposition modeling process parameters on mechanical properties. Int. J. Sci. Technol. Res. 8, 689–693 (2019)

    Google Scholar 

  25. Vicente, C.M.S., Martins, T.S., Leite, M., Ribeiro, A., Reis, L.: Influence of fused deposition modeling parameters on the mechanical properties of ABS parts. Polym. Adv. Technol. 31, 501–507 (2020)

    Article  Google Scholar 

  26. Ouballouch, A., alaiji, R.E., Ettaqi, S., Bouayad, A., Sallaou, M., Lasri, L.: Evaluation of dimensional accuracy and mechanical behavior of 3D printed reinforced polyamide parts. Procedia Struct. Integr. 19, 433–441 (2019)

    Article  Google Scholar 

  27. Ramkumar, P.L.: Investigation on the effect of process parameters on impact strength of fused deposition modelling specimens. IOP Conf. Ser. Mater. Sci. Eng. 491, 012026 (2019)

    Article  Google Scholar 

  28. Alafaghani, A., Qattawi, A., Alrawi, B., Guzman, A.: Experimental optimization of fused deposition modelling processing parameters: a design-for-manufacturing approach. Procedia Manuf. 10, 791–803 (2017)

    Article  Google Scholar 

  29. Akhoundi, B., Behravesh, A.H.: Effect of filling pattern on the tensile and flexural mechanical properties of FDM 3D printed products. Exp. Mech. 59, 883–897 (2019)

    Article  Google Scholar 

  30. Aloyaydi, B., Sivasankaran, S., Mustafa, A.: Investigation of infill-patterns on mechanical response of 3D printed poly-lactic-acid. Polym. Test. 87, 106557 (2020)

    Article  Google Scholar 

  31. Chadha, A., Ul Haq, M.I., Raina, A., Singh, R.R., Penumarti, N.B., Bishnoi, M.S.: Effect of fused deposition modelling process parameters on mechanical properties of 3D printed parts. World J. Eng. 16, 550–559 (2019)

    Article  Google Scholar 

  32. Ćwikła, G., Grabowik, C., Kalinowski, K., Paprocka, I., Ociepka, P.: The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts. IOP Conf. Ser. Mater. Sci. Eng. 227, 012033 (2017)

    Article  Google Scholar 

  33. Triyono, J., Sukanto, H., Saputra, R.M., Smaradhana, D.F.: The effect of nozzle hole diameter of 3D printing on porosity and tensile strength parts using polylactic acid material. Open Eng. 10, 762–768 (2020)

    Article  Google Scholar 

  34. Al Rashid, A., Abdul Qadir, S., Koç, M.: Microscopic analysis on dimensional capability of fused filament fabrication three-dimensional printing process. J. Elastomers Plast. 54, 385–403 (2021)

    Article  Google Scholar 

  35. Kuznetsov, V.E., Solonin, A.N., Urzhumtsev, O.D., Schilling, R., Tavitov, A.G.: Strength of PLA components fabricated with fused deposition technology using a desktop 3D printer as a function of geometrical parameters of the process. Polymers 10, 313 (2018)

    Article  Google Scholar 

  36. Chung Wang, C., Lin, T.W., Hu, S.S.: Optimizing the rapid prototyping process by integrating the Taguchi method with the Gray relational analysis. Rapid Prototyp. J. 13, 304–315 (2007)

    Article  Google Scholar 

  37. Nidagundi, V.B., Keshavamurthy, R., Prakash, C.P.S.: Studies on parametric optimization for fused deposition modelling process. Mater. Today Proc. 2, 1691–1699 (2015)

    Article  Google Scholar 

  38. Panda, S., Padhee, S., Sood, A.K., Mahapatra, S.: Optimization of fused deposition modelling (FDM) process parameters using bacterial foraging technique. Intell. Inform. Manag. 1, 89–97 (2009)

    Google Scholar 

  39. Ziemian, S., Okwara, M., Ziemian, C.W.: Tensile and fatigue behavior of layered acrylonitrile butadiene styrene. Rapid Prototyp. J. 21, 270–278 (2015)

    Article  Google Scholar 

  40. Zhou, Y.-G., Su, B., Turng, L.: Deposition-induced effects of isotactic polypropylene and polycarbonate composites during fused deposition modeling. Rapid Prototyp. J. 23, 869–880 (2017)

    Article  Google Scholar 

  41. Raut, S., Jatti, V.S., Khedkar, N.K., Singh, T.P.: Investigation of the effect of built orientation on mechanical properties and total cost of FDM parts. Procedia Mater. Sci. 6, 1625–1630 (2014)

    Article  Google Scholar 

  42. Abdelrhman, A.M., Wei Gan, W., Kurniawan, D.: Effect of part orientation on dimensional accuracy, part strength, and surface quality of three dimensional printed part. IOP Conf. Ser. Mater. Sci. Eng. 694, 012048 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Patel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, R., Jani, S. & Joshi, A. Review on multi-objective optimization of FDM process parameters for composite materials. Int J Interact Des Manuf 17, 2115–2125 (2023). https://doi.org/10.1007/s12008-022-01111-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-01111-9

Keywords

Navigation