Skip to main content
Log in

Novel design and optimization of S band patch antenna for space application by using a gravitational search algorithm

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The design of the patch antenna oriented for space application is a balanced solution between multiple disciplines. New disciplines are considered in these studies such as vibration and cost. To address the challenges, a novel framework called Multidisciplinary Design Optimization is developed including problem definition, multidisciplinary modeling and a heuristic optimizer. The Gravitational Search algorithm is used to enhance the performance parameters of the proposed configuration. The performance parameters are computed at the resonating frequencies of the proposed antenna. Two polarized configurations in S-band are proposed: rectangular and circular. A proof-of-concept design example is the 2.4 GHz patch antenna using Rogers substrate material which has demonstrated the effectiveness of the proposed framework. The proposed antenna could be a successful choice for micro satellite applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

AR:

Axial ratio

VSWR:

Voltage standing wave ratio

RF:

Radio frequency

PCB:

Printed circuit board

MDO:

Multidisciplinary design optimization

GSA:

Gravitational search algorithm

RSM:

Response surface method

\({\upvarepsilon }_{\mathrm{eff}}\) :

Effective dielectric substrate

\({\upvarepsilon }_{\mathrm{r}}\) :

Dielectric substrate

\(\mathrm{c}\) :

Speed of light

\({f}_{r}\) :

Natural frequency

\(W\) :

Width of patch

\(h\) :

Patch height

\(L\) :

Length of patch

\(\Delta L\) :

Extension length

\({L}_{eff}\) :

Effective length

\({a}_{e}\) :

Effective radius

\(Q\) :

PCB transmissibility

\({G}_{rms,PCB}\) :

Response system

PSD:

Power spectral density

\({\delta }_{rms}\) :

PCB deflection

References

  1. Joseph, R.K., Roman, H., Jason, R.: Small satellites an overview and assessment. Acta Astronaut. 170, 93–105 (2020)

    Article  Google Scholar 

  2. Zafrane, M.A.: Intégration de l’Optimisation Multidisciplinaire dans le Processus de Conception Lanceur-Satellite. Université des Sciences et de la Technologie d'Oran - Mohamed Boudiaf (2018)

  3. Chu, C., Yin, R., Hung, Y., Tang, H., Chun, S.H., Chang, F.: Estimating monthly PM2.5 concentrations from satellite remote sensing data, meteorological variables, and land use data using ensemble statistical modeling and a random forest approach. Environ. Pollut. (2021). https://doi.org/10.1016/j.envpol.2021.118159

    Article  Google Scholar 

  4. de Brito, C.S., da Silva, R.M., Santos, C.A.G., Neto, R.M.B., & Coelho, V.H.R.: Monitoring meteorological drought in a semiarid region using two long-term satellite-estimated rainfall datasets: a case study of the Piranhas River basin, northeastern Brazil. Atmos. Res. 250 (2021)

  5. John, Q., Alfred, P., Sivakumar, M.V.K.: Satellite-Based Applications on Climate Change. Springer, Dordrecht (2013). https://doi.org/10.1007/978-94-007-5872-8

  6. Guanna, P., Yuan, X.: The potential of CO2 satellite monitoring for climate governance: a review. J. Environ. Manag. 277 (2021)

  7. Siti, N.K.B.A., Soma, S., Tetsuo, I., Yoshimitsu, A.: Analysis of satellite images for disaster detection. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (2016)

  8. Le Cozannet, G., Kervyn, M., Russo, S., et al.: Space-based earth observations for disaster risk management. Surv Geophys 41, 1209–1235 (2020). https://doi.org/10.1007/s10712-020-09586-5

    Article  Google Scholar 

  9. Hung, L., Hung-Lung, A.H., Mitchell, D.G.: Special section guest editorial: satellite remote sensing for disaster monitoring and risk assessment, management, and mitigation. J. Appl. Remote Sens. 15(3), 032001 (2021). https://doi.org/10.1117/1.JRS.15.032001

    Article  Google Scholar 

  10. Alberto, L.A., Ángel, U., María, E.A.M., Marino, P.: Earth observation actionable information supporting disaster risk reduction efforts in a sustainable development framework. Remote Sens. 11(1), 49 (2019). https://doi.org/10.3390/rs11010049

    Article  Google Scholar 

  11. Pratistha, K., Faisal, H.: A review of applications of satellite earth observation data for global societal benefit and stewardship of planet earth. Space Policy 36, 46–54 (2016)

    Article  Google Scholar 

  12. Guansheng, P., Guopeng, S., Yongming, H., Jing, Y., Shang, X., Lining, X., Pieter, V.: Solving the agile earth observation satellite scheduling problem with time-dependent transition times. IEEE Trans. Syst. Man Cybern. Syst. 1–12 (2020)

  13. Baumann, P., et al.: Fostering cross-disciplinary earth science through datacube analytics. In: Mathieu, P.P., Aubrecht, C. (eds.) Earth Observation Open Science and Innovation. ISSI Scientific Report Series. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65633-5_5

    Chapter  Google Scholar 

  14. Lary, D.J., et al.: Machine learning applications for earth observation. In: Mathieu, P.P., Aubrecht, C. (eds.) Earth Observation Open Science and Innovation. ISSI Scientific Report Series. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65633-5_8

    Chapter  Google Scholar 

  15. Gunter, S., Stefan, D.: High resolution earth observation satellites and services in the next decade—a European perspective. Acta Astronaut. 57, 520–533 (2005)

    Article  Google Scholar 

  16. Xinwei, W., Guohua, W., Lining, X.: Agile earth observation satellite scheduling over 20 years: formulations, methods, and future directions. IEEE Syst. J. 15, 3881–3892 (2021)

    Article  Google Scholar 

  17. Mohammed, S.M., Benyettoub, M., Boudjemaia, A., Chouraquia, S., Hashida, Y., Cooksley, J.R., Sweetinge, M.N.: Alsat-1 First Algerian Low Earth Orbit Observation Microsatellite in Orbit. IEEE Publisher (2006)

  18. Zhimeng, H., Dagang, J., Xin, L., Bin, Z., Qinyong, Z., Kaiyu, Q.: Performance research on flat-topped beam-based small satellites free space optical communication. Opt. Commun. 487 (2021)

  19. Mingjun, P., Jihe, W., Dexin, Z., Qingxian, J., Xiaowei, S.: Optimal small satellite orbit design based on robust multi-objective optimization method. Aerosp. Sci. Technol. (2017). https://doi.org/10.1016/j.ast.2017.08.016

    Article  Google Scholar 

  20. Min-Hua, H., Michalski, K.A., Kai, C.: Waveguide excited microstrip patch antenna-theory and experiment. IEEE Trans. Antennas Propag. 42 (1994)

  21. Rodney, W.: Microstrip Patch Antennas: A Designer’s Guide. Springer, Berlin (2003). https://doi.org/10.1007/978-1-4757-3791-2

    Book  Google Scholar 

  22. Chao, S.: A design of low profile microstrip patch antenna with bandwidth enhancement. IEEE Access. 8, 181988–181997 (2020)

    Article  Google Scholar 

  23. Emre, K., Vinita, M., Parul, T., Neha, S.: Bridged circular microstrip patch antenna for wireless applications. Mater. Today Proc. 46, 5742–5747 (2021)

    Article  Google Scholar 

  24. Mohammad, T.I., Sikder, S.I., Abu Sajed, R., Asraful, A., Mehidi, H.C., Mohammad, R.I.F.: Design of a microstrip patch sensor antenna for the measurement of permittivity. Mater. Today Proc. 42, 1341–1344 (2021)

    Article  Google Scholar 

  25. Kundu, S.K., Singhal, P.K.: A slotted circularly polarized semicylindrical conformal patch antenna for EBS and BRS bands. J. Comput. Electron. 19, 780–791 (2020). https://doi.org/10.1007/s10825-020-01480-y

    Article  Google Scholar 

  26. George, C., Cătălin, M., Andrei, K.: Design and implementation of microstrip patch antenna array. In: 10th International Conference on Communications (COMM). IEEE Publisher (2014). https://doi.org/10.1109/ICComm.2014.6866738

  27. Akanksha, D., Pranjal, C., Champali, I., Shreenivas, J.: Design and development of microstrip patch antenna for GPS applications. In: Fourth International Conference on Computing Communication Control and Automation (ICCUBEA). IEEE Publisher (2018). https://doi.org/10.1109/ICCUBEA.2018.8697751.

  28. Ai, H., Wu, C., Zhou, S.: Design and simulation of rectangular microstrip patch antenna with 5Gmm-wave coaxial line back-feed and microstrip line side-feeds. In: 2020 5th International Conference on Information Science, Computer Technology and Transportation (ISCTT), pp. 179–182 (2020). https://doi.org/10.1109/ISCTT51595.2020.00039

  29. Sharma, S., Kumar, M., Nigam, H., Mathur, M.: Dual band circular patch Coplaner Microstrip patch antenna for X band and Ku band applications. In: 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), pp. 344–346 (2021). https://doi.org/10.1109/InCAP52216.2021.9726406

  30. Sun, M.-J., Liu, N.-W., Zhu, L., Fu, G.: Wideband microstrip patch antenna with low RCS using multi-mode resonance. In: 2021 15th European Conference on Antennas and Propagation (EuCAP), pp. 1–3 (2021). https://doi.org/10.23919/EuCAP51087.2021.9411319

  31. Zhang, H., Huang, F., Han, Y.: A new approach to design microstrip patch antenna with wideband harmonic suppression. In: 2021 International Symposium on Antennas and Propagation (ISAP), pp. 1–2 (2021). https://doi.org/10.23919/ISAP47258.2021.9614365

  32. Singh, A., Mehra, R.M., Pandey, V.K.: Design and optimization of microstrip patch antenna for UWB applications using moth-flame optimization algorithm. Wirel. Pers. Commun. 112, 2485–2502 (2020). https://doi.org/10.1007/s11277-020-07160-1

    Article  Google Scholar 

  33. Jaroslaw, S., Alan, M., Michel, V.T.: John Wiley & Sons (2015)

  34. Cramer, E.J., Dennis, J.E. Jr., Frank, P.D., Lewis, R.M., Shubin, G.R.: Problem formulation for multidisciplinary optimization. Center for Research on Parallel Computation, Rice Univ. Report CRPC-TR93334 (1993)

  35. Hajela, P., Bloebaum, C.L., Sobieszczanski-Sobieski, J.: Application of global sensitivity equations in multidisciplinary aircraft synthesis. J. Aircr. 27(12), 1002–1010 (1990)

    Article  Google Scholar 

  36. Zadeh, P.M., Shirazi, M.A.S.: Multidisciplinary design and optimization methods. In: Metaheuristic Applications in Structures and Infrastructures (2013)

  37. Wang, W., Fan, W., Chang, T., Liu, H.: The study on dual response surface method in MDO. In: Third International Conference on Natural Computation (ICNC 2007). IEEE Publisher (2007). https://doi.org/10.1109/ICNC.2007.751

  38. Zafrane, M.A., Boudjemai, A., Boughanmi, N.: Interactive design of space manufacturing systems, optimality and opportunity. Int. J. Interact. Des. Manuf. 13, 773–796 (2019). https://doi.org/10.1007/s12008-018-0515-3

    Article  Google Scholar 

  39. Abdelmadjid, B., Abdelmoumen, B., Mohammed, Z., Rachida, H.: Multidisciplinary Design Optimization in Small Satellite. (2015). https://doi.org/10.1007/978-3-319-14532-7_24

  40. Berrezzoug, S., Boudjemai, A., Bendimerad, F.T.: Interactive design and multidisciplinary optimization of geostationary communication satellite. Int. J. Interact. Des. Manuf. 13, 1519–1540 (2019). https://doi.org/10.1007/s12008-019-00590-7

    Article  Google Scholar 

  41. Hu, K., Song, B., Zhan, L., Li, Z., Chang, X.: MDO application in solid rocket motor design. In: 2nd IEEE International Conference on Information Management and Engineering. IEEE Publisher (2010). https://doi.org/10.1109/ICIME.2010.5478347

  42. Wang, X.H., Li, R.J., Xia, R.W.: Comparison of MDO methods for an earth observation satellite. Procedia Eng. 67, 166–177 (2013)

    Article  Google Scholar 

  43. John, T.H., Dae, Y.L., James, W.C., Joaquim, R.R.A.M.: Large-scale multidisciplinary optimization of a small satellite’s design and operation. J. Spacecr. Rocket. (2014). https://doi.org/10.2514/1.A32751

    Article  Google Scholar 

  44. Tosserams, S., Etman, L.F.P., Rooda, J.E.: A micro-accelerometer MDO benchmark problem. Struct. Multidisc. Optim. (2010). https://doi.org/10.1007/s00158-009-0422-0

    Article  MATH  Google Scholar 

  45. Tudorel, P.A.: Launch vehicle—MDO in the development of a microlauncher. Transp. Res. Proc. 29, 1–11 (2018)

    Google Scholar 

  46. Balanis, C.A.: Antenna Theory, Analysis and Design. John Wiley & Sons, New York (2005)

    Google Scholar 

  47. Adejoh, J., Okere, B.I., Lanre, D.: Design of an S-band rectangular microstrip patch antenna. Int. J. Eng. Appl. Sci. (IJEAS) 4 (2017)

  48. Girish, K., Ray, K.P.: Broadband Microstrip Antennas. Artech House, Boston (2003)

    Google Scholar 

  49. Abdullahi, A., Wysenyuy, D.F., Ihiabe, Y.A., Ahiaba, N.O.: Design of a 4.5 GHz rectangular microstrip patch antenna. Int. J. Trend Res. Dev. 3 (2017)

  50. Naresh, K.P., Chandan, K.R., Jagadeesh, B., Madan Mohan, G.V.: Design and analysis of an antenna for S-band operations. Int. J. Sci. Eng. Res. 7 (2016)

  51. Zafrane, M.A., Bachir, A., Boudechiche, Z., et al.: Interactive design and advanced manufacturing of double solar panel deployment mechanism for CubeSat, part 1: electronics design. Int. J. Interact. Des. Manuf. 14, 503–518 (2020). https://doi.org/10.1007/s12008-020-00642-3

    Article  Google Scholar 

  52. Steinberg, D.S.: Vibration Analysis for Electronic Equipment. John Wiley and Sons, New York (2000)

    Google Scholar 

  53. Esmat, R., Elaheh, R., Hossein, N.P.: GSA: a gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)

    Article  MATH  Google Scholar 

  54. Hongping, H., Xiaxia, C., Yanping, B.: Two kinds of classifications based on improved gravitational search algorithm and particle swarm optimization algorithm. Hindawi Adv. Math. Phys. (2017). https://doi.org/10.1155/2017/2131862

    Article  MATH  Google Scholar 

  55. Norlina, M.S., Mazidah, P., Mohamad, R.M.: An overview of gravitational search algorithm utilization in optimization problems. In: 3rd International Conference on System Engineering and Technology. IEEE Publisher (2013). https://doi.org/10.1109/ICSEngT.2013.6650144

  56. Amarjeet, S., Kusum, D., Atulya, N.: A new improved gravitational search algorithm for function optimization using a novel. Best-So-Far. Update Mechanism. In: Second International Conference on Soft Computing and Machine Intelligence (ISCMI) (2015). https://doi.org/10.1109/ISCMI.2015.21

  57. Nazmul, S., Hojjat, A.: Gravitational search algorithm and its variants. Int. J. Pattern Recognit. Artif. Intell. (2016). https://doi.org/10.1142/S0218001416390018

    Article  MathSciNet  Google Scholar 

  58. Esmat, R., Elaheh, R., Hossein, N.P.: A comprehensive survey on gravitational search algorithm. Swarm Evol. Comput. 41, 141–158 (2018)

    Article  Google Scholar 

  59. Oukil, S., Boudjemai, A.: Geostationary communication satellite solar array optimization using gravitation search algorithm. J. Aerosp. Technol. Manag. (2020). https://doi.org/10.5028/jatm.v12.1165

    Article  Google Scholar 

  60. Mittal, H., Tripathi, A., Pandey, A.C., et al.: Gravitational search algorithm: a comprehensive analysis of recent variants. Multimed. Tools Appl. (2021). https://doi.org/10.1007/s11042-020-09831-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Amine Zafrane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafrane, M.A., Mebrek, M.A., Souillah, H. et al. Novel design and optimization of S band patch antenna for space application by using a gravitational search algorithm. Int J Interact Des Manuf 17, 1131–1148 (2023). https://doi.org/10.1007/s12008-022-01074-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-01074-x

Keywords

Navigation