Skip to main content
Log in

Design and modeling of abrasive flow finishing of freeform surfaces of FDM printed femoral component of knee implant pattern

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The design and manufacture of medical implants is a dynamic and important area of research, both from a medical and an engineering standpoint. For use in the actual fabrication of the end-use implant utilizing the investment casting method, a replica of a knee implant can be produced using the fused deposition modeling (FDM) technique. Whereas there are numerous benefits of the FDM process, the outer surface of the FDM printed parts are subjected to poor surface finishing due to the successive addition of material layers. So FDM printed details need to be post-processed using suitable surface finishing techniques, i.e., abrasive flow machining (AFM) process. This paper describes an experimental investigation on AFM of freeform surfaces of FDM printed femoral component of knee implant replica for investment casting application. The AFM media is made with a base material of corn-starch powder, a carrier medium of EDM oil, and additives of aloe barbadensis miller (aloe vera gel) and glycerin. The rheology of this newly developed AFM media has been measured and optimized for maximum material removal rate. AFM media is also characterized to check its thermal stability and functional elements using thermogravimetric analysis (TGA) and Fourier Transform Infrared (FTIR) spectroscopic method. Finally, the FDM printed pattern of the femoral component of the knee implant is finished using a one-way AFM machine using the newly prepared optimized AFM media. For an FDM printed pattern of a femoral component of a knee implant, the maximum percentage improvement in average surface roughness (Ra) that a medium based on corn-starch (50% corn-starch powder) can achieve is 83%, and the initial surface roughness was reduced by 81.58%, from 9.30 to 02.10 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Abbreviations

2D:

Two dimensional

3-D:

Three dimensional

3DP:

3-D printing

ABS:

Acrylonitrile butadiene styrene

AFM:

Abrasive flow machine

AM:

Additive manufacturing

ASTM:

American society for testing and materials

CAD:

Computer-aided design

CT:

Computed tomography

CNC:

Computer numerical control

CFD:

Computational fluid dynamics

DED:

Direct energy deposition

CSAM:

Cold spray additive manufacturing

DEM:

Discrete element method

DFAM:

Design for additive manufacturing

DLP:

Digital light processing

DMLS:

Direct metal laser sintering

EBAM:

Electron-beam additive manufacturing

EBM:

Electron beam melting

EDM:

Electric discharge machining

FDM:

Fused deposition modelling

FFF:

Fused filament fabrication

FTIR:

Fourier transform infrared

IC:

Investment casting

MDS:

Molecular dynamic simulation

MEX:

Material extrusion

MAF:

Magnetic abrasive finishing

MRF:

Magnetorheological finishing

MFP:

Magnetic float polishing

PLA:

Polylactic acid

RP:

Rapid prototyping

R-MRAFF:

Rotational-magnetorheological abrasive flow finishing

SLA:

Stereolithography

SLM:

Selective laser melting

SLS:

Selective laser sintering

SSE:

Stair-stepping effect

STL:

Standard triangle language

TGA:

Thermogravimetric analysis

WAAM:

Wire arc additive manufacturing

References

  1. Muthaiah, V.M.S., Indrakumar, S., Suwas, S., Chatterjee, K.: Surface engineering of additively manufactured titanium alloys for enhanced clinical performance of biomedical implants: a review of recent developments. Bioprinting 25, e00180 (2022)

    Article  Google Scholar 

  2. Radwan-Pragłowska, J., Janus, Ł, Szajna, E., Galek, T., Sierakowska, A., Piątkowski, M., Tupaj, M., Radomski, P., Michalec, M., Bogdał, D.: Biodegradable Mg-based implants obtained via anodic oxidation applicable in dentistry: preparation and characterization. J. Mater. Res. Technol. 20, 1736 (2022)

    Article  Google Scholar 

  3. Amukarimi, S., Mozafari, M.: Biodegradable magnesium biomaterials—road to the clinic. Bioengineering 9, 107 (2022)

    Article  Google Scholar 

  4. Amirtharaj Mosas, K.K., Chandrasekar, A.R., Dasan, A., Pakseresht, A., Galusek, D.: Recent advancements in materials and coatings for biomedical implants. Gels 8, 323 (2022)

    Article  Google Scholar 

  5. Hussain, M., Khan, S.M., Al-Khaled, K., Ayadi, M., Abbas, N., Chammam, W.: Performance analysis of biodegradable materials for orthopedic applications. Mater. Today Commun. 31, 103167 (2022)

    Article  Google Scholar 

  6. Carr, B.C., Goswami, T.: Knee implants—review of models and biomechanics. Mater. Des. 30, 398–413 (2009)

    Article  Google Scholar 

  7. Skjöldebrand, C., Tipper, J.L., Hatto, P., Bryant, M., Hall, R.M., Persson, C.: Current status and future potential of wear-resistant coatings and articulating surfaces for hip and knee implants. Mater. Today Bio. 15, 100270 (2022)

    Article  Google Scholar 

  8. Tandogan, R.N., Bekmez, S., Polat, M.: Optimal implant fixation in knee arthroplasty: cemented versus cementless knee arthroplasty. In: Basics in Primary Knee Arthroplasty, pp. 437–460. Springer, Cham (2022)

    Chapter  Google Scholar 

  9. Magdziak, M.: The influence of a number of points on results of measurements of a turbine blade. Aircr. Eng. Aerosp. Technol. 89, 6, 953-959 (2017). https://doi.org/10.1108/AEAT-03-2016-0044

  10. Felhő, C., Kundrak, J.: Comparison of theoretical and real surface roughness in face milling with octagonal and circular inserts. In: Key Engineering Materials, pp. 360–365. Trans Tech Publ (2014)

    Google Scholar 

  11. Kundrák, J., Varga, G.: Possibility of reducing environmental load in hard machining. In: Key Engineering Materials, pp. 205–210. Trans Tech Publ (2012)

    Google Scholar 

  12. Kundrak, J., Varga, G., Deszpoth, I., Molnar, V.: Some aspects of the hard machining of bore holes. In: Applied Mechanics and Materials, pp. 126–132. Trans Tech Publ (2013)

    Google Scholar 

  13. Illés, B., Tamás, P., Dobos, P., Skapinyecz, R.: New challenges for quality assurance of manufacturing processes in industry 4.0. In: Solid State Phenomena, pp. 481–486. Trans Tech Publ (2017)

    Google Scholar 

  14. Brand, R.A., Mont, M.A., Manring, M.M.: Biographical sketch: themistocles Gluck (1853–1942). Clin. Orthop. Relat. Res. 469, 1525–1527 (2011)

    Article  Google Scholar 

  15. Taylor-Williams, O., Inderjeeth, C.A., Almutairi, K.B., Keen, H., Preen, D.B., Nossent, J.C.: Total hip replacement in patients with rheumatoid arthritis: trends in incidence and complication rates over 35 years. Rheumatol. Ther. 9, 565–580 (2022)

    Article  Google Scholar 

  16. Carr, A.J., Robertsson, O., Graves, S., Price, A.J., Arden, N.K., Judge, A., Beard, D.J.: Knee replacement. Lancet 379, 1331–1340 (2012)

    Article  Google Scholar 

  17. Taylor, C.E.V., Murray, C.M., Stanton, T.R.: Patient perspectives of pain and function after knee replacement: a systematic review and meta-synthesis of qualitative studies. Pain Rep. 7, e1006 (2022)

    Article  Google Scholar 

  18. Harrysson, O.L.A., Hosni, Y.A., Nayfeh, J.F.: Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study. BMC Musculoskelet. Disord. 8, 1–10 (2007)

    Article  Google Scholar 

  19. Song, C., Yang, Y., Wang, Y., Wang, D., Yu, J.: Research on rapid manufacturing of CoCrMo alloy femoral component based on selective laser melting. Int. J. Adv. Manuf. Technol. 75, 445–453 (2014)

    Article  Google Scholar 

  20. Behera, M., Panemangalore, D.B., Shabadi, R.: Additively manufactured magnesium-based bio-implants and their challenges. Trans. Indian Natl. Acad. Eng. 6, 917–932 (2021)

    Article  Google Scholar 

  21. Kundu, M., Kadambi, P., Dhatrak, P.: Additive manufacturing of bio-implants using functionally graded materials. In: AIP Conference Proceedings, p. 20062. AIP Publishing LLC (2022)

  22. Ho, C.M.B., Ng, S.H., Yoon, Y.-J.: A review on 3D printed bioimplants. Int. J. Precis. Eng. Manuf. 16, 1035–1046 (2015)

    Article  Google Scholar 

  23. Liu, G., He, Y., Liu, P., Chen, Z., Chen, X., Wan, L., Li, Y., Lu, J.: Development of bioimplants with 2D, 3D, and 4D additive manufacturing materials. Engineering 6, 1232–1243 (2020)

    Article  Google Scholar 

  24. Paul, S., Nath, A., Roy, S.S.: Additive manufacturing of multi-functional biomaterials for bioimplants: a review. In: IOP Conference Series: Materials Science and Engineering, p. 12016. IOP Publishing (2021)

  25. Telang, V.S., Pemmada, R., Ramakrishna, S., Tandon, P., Nanda, H.S.: Overview of current additive manufacturing technologies for titanium bioimplants. In: Nanoscale Engineering of Biomaterials: Properties and Applications, pp. 117–130. Springer (2022)

    Chapter  Google Scholar 

  26. Thanigaivel, S., Priya, A.K., Balakrishnan, D., Dutta, K., Rajendran, S., Soto-Moscoso, M.: Insight on recent development in metallic biomaterials: strategies involving synthesis, types and surface modification for advanced therapeutic and biomedical applications. Biochem. Eng. J. (2022). https://doi.org/10.1016/j.bej.2022.108522

    Article  Google Scholar 

  27. Kulkarni, S.V., Nemade, A.C., Sonawwanay, P.D.: An overview on metallic and ceramic biomaterials. In: Recent Advances in Manufacturing Processes and Systems, pp. 149–165. Springer (2022)

    Chapter  Google Scholar 

  28. Dixit, N., Sharma, V., Kumar, P.: Research trends in abrasive flow machining: a systematic review. J. Manuf. Process. 64, 1434–1461 (2021)

    Article  Google Scholar 

  29. Cheema, M.S., Venkatesh, G., Dvivedi, A., Sharma, A.K.: Developments in abrasive flow machining: a review on experimental investigations using abrasive flow machining variants and media. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 226, 1951–1962 (2012). https://doi.org/10.1177/0954405412462000

    Article  Google Scholar 

  30. Barrios, P., Danjou, C., Eynard, B.: Literature review and methodological framework for integration of IoT and PLM in manufacturing industry. Comput. Ind. 140, 103688 (2022)

    Article  Google Scholar 

  31. Chohan, J.S., Singh, R.: Pre and post processing techniques to improve surface characteristics of FDM parts: a state of art review and future applications. Rapid Prototyp. J. 23, 495–513 (2017). https://doi.org/10.1108/RPJ-05-2015-0059

    Article  Google Scholar 

  32. Maleki, E., Bagherifard, S., Bandini, M., Guagliano, M.: Surface post-treatments for metal additive manufacturing: progress, challenges, and opportunities. Addit. Manuf. 37, 101619 (2021). https://doi.org/10.1016/j.addma.2020.101619

    Article  Google Scholar 

  33. Jin, Y., Li, H., He, Y., Fu, J.: Quantitative analysis of surface profile in fused deposition modelling. Addit. Manuf. 8, 142–148 (2015)

    Google Scholar 

  34. Manmadhachary, A., Siva Rama Krishana, L., Saxena, K.K.: Quantification of the accuracy of additive manufactured (3D printed) medical models. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-00949-3

    Article  Google Scholar 

  35. Prashar, G., Vasudev, H., Bhuddhi, D.: Additive manufacturing: expanding 3D printing horizon in industry 4.0. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-00956-4

    Article  Google Scholar 

  36. Ni, J., Ling, H., Zhang, S., Wang, Z., Peng, Z., Benyshek, C., Zan, R., Miri, A.K., Li, Z., Zhang, X.: Three-dimensional printing of metals for biomedical applications. Mater. Today Bio. 3, 100024 (2019)

    Article  Google Scholar 

  37. Dey, A., Hoffman, D., Yodo, N.: Optimizing multiple process parameters in fused deposition modeling with particle swarm optimization. Int. J. Interact. Des. Manuf. 14, 393–405 (2020)

    Article  Google Scholar 

  38. Yadav, A., Rohru, P., Babbar, A., Kumar, R., Ranjan, N., Chohan, J.S., Kumar, R., Gupta, M.: Fused filament fabrication: a state-of-the-art review of the technology, materials, properties and defects. Int. J. Interact. Des. Manuf. 1–23 (2022). https://doi.org/10.1007/s12008-022-01026-5

  39. Regina, F., Lavecchia, F., Galantucci, L.M.: Preliminary study for a full colour low cost open source 3D printer, based on the combination of fused deposition modelling (FDM) or fused filament fabrication (FFF) and inkjet printing. Int. J. Interact. Des. Manuf. 12, 979–993 (2018)

    Article  Google Scholar 

  40. Barbosa, W.S., Gioia, M.M., Temporão, G.P., Meggiolaro, M.A., Gouvea, F.C.: Impact of multi-lattice inner structures on FDM PLA 3D printed orthosis using Industry 4.0 concepts. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-00962-6

    Article  Google Scholar 

  41. Grandvallet, C., Mbow, M.M., Mainwaring, T., Pourroy, F., Vignat, F., Marin, P.: Eight action rules for the orientation of additive manufacturing parts in powder bed fusion: an industry practice. Int. J. Interact. Des. Manuf. 14, 1159–1170 (2020)

    Article  Google Scholar 

  42. Alam, M.A., Patel, A., Purohit, R., Taufik, M.: Thermal analysis for improvement of mechanical properties in fused filament fabricated parts. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-00981-3

    Article  Google Scholar 

  43. Tamburrino, F., Barone, S., Paoli, A., Razionale, A.V.: Post-processing treatments to enhance additively manufactured polymeric parts: a review. Virtual Phys. Prototyp. 16, 218–251 (2021). https://doi.org/10.1080/17452759.2021.1917039

    Article  Google Scholar 

  44. Kumbhar, N.N., Mulay, A.V.: Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies: a review. J. Inst. Eng. Ser. C. 99, 481–487 (2018). https://doi.org/10.1007/s40032-016-0340-z

    Article  Google Scholar 

  45. Mahmood, M.A., Chioibasu, D., Ur Rehman, A., Mihai, S., Popescu, A.C.: Post-processing techniques to enhance the quality of metallic parts produced by additive manufacturing. Metals 12, 77 (2022)

    Article  Google Scholar 

  46. Pereira, S., Vaz, A.I.F., Vicente, L.N.: On the optimal object orientation in additive manufacturing. Int. J. Adv. Manuf. Technol. 98, 1685–1694 (2018)

    Article  Google Scholar 

  47. Moroni, G., Syam, W.P., Petro, S.: Towards early estimation of part accuracy in additive manufacturing. Procedia Cirp. 21, 300–305 (2014)

    Article  Google Scholar 

  48. Das, P., Chandran, R., Samant, R., Anand, S.: Optimum part build orientation in additive manufacturing for minimizing part errors and support structures. Procedia Manuf. 1, 343–354 (2015)

    Article  Google Scholar 

  49. Matos, M.A., Maria, A., Pereira, A.I.: Improving additive manufacturing performance by build orientation optimization. Int. J. Adv. Manuf. Technol. 107, 1993–2005 (2020)

    Article  Google Scholar 

  50. Ayrilmis, N.: Effect of layer thickness on surface properties of 3D printed materials produced from wood flour/PLA filament. Polym. Test. 71, 163–166 (2018)

    Article  Google Scholar 

  51. Taufik, M., Jain, P.K.: Thermally assisted finishing of fused deposition modelling build part using a novel CNC tool. J. Manuf. Process. 59, 266–278 (2020)

    Article  Google Scholar 

  52. Wahab Hashmi, A., Singh Mali, H., Meena, A.: Improving the surface characteristics of additively manufactured parts: a review. Mater. Today Proc. (2021). https://doi.org/10.1016/J.MATPR.2021.04.223

    Article  Google Scholar 

  53. Hashmi, A.W., Mali, H.S., Meena, A., Puerta, V., Kunkel, M.E.: Surface characteristics improvement methods for metal additively manufactured parts: a review. Adv. Mater. Process. Technol. (2022). https://doi.org/10.1080/2374068X.2022.2077535

    Article  Google Scholar 

  54. Hashmi, A.W., Mali, H.S., Meena, A.: Surface quality improvement methods of additively manufactured parts: a review. Solid State Technol. 63, 23477–23517 (2020)

    Google Scholar 

  55. Hashmi, A.W., Mali, H.S., Meena, A.: The surface quality improvement methods for FDM printed parts: a review. In: Fused Deposition Modeling Based 3D Printing, pp. 167–194. Springer, Cham (2021)

    Chapter  Google Scholar 

  56. Sambharia, J., Mali, H.S.: Recent developments in abrasive flow finishing process: a review of current research and future prospects. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. (2017). https://doi.org/10.1177/0954405417731466

    Article  Google Scholar 

  57. Rhoades, L.J.: Abrasive flow machining for automatic surface finishing and capacitance technology for in-process surface and dimensional metrology. In: Surface Engineering, pp. 456–467. Springer (1990)

    Chapter  Google Scholar 

  58. Kumar, S.S., Hiremath, S.S.: A review on abrasive flow machining (AFM). Procedia Technol. 25, 1297–1304 (2016)

    Article  Google Scholar 

  59. Sambharia, J.K., Mali, H.S., Garg, V.: Experimental investigation on unidirectional abrasive flow machining of trim die workpiece. Mater. Manuf. Process. 33, 651–660 (2018)

    Article  Google Scholar 

  60. Jain, V.K., Adsul, S.G.: Experimental investigations into abrasive flow machining (AFM). Int. J. Mach. Tools Manuf. 40, 1003–1021 (2000)

    Article  Google Scholar 

  61. Williams, R.E., Melton, V.L.: Abrasive flow finishing of stereolithography prototypes. Rapid Prototyp. J. 4, 56 (1998)

    Article  Google Scholar 

  62. Mali, H.S., Prajwal, B., Gupta, D., Kishan, J.: Abrasive flow finishing of FDM printed parts using a sustainable media. Rapid Prototyp. J. 24, 593–606 (2018). https://doi.org/10.1108/RPJ-10-2017-0199

    Article  Google Scholar 

  63. Wahab Hashmi, A., Singh Mali, H., Meena, A.: Experimental investigation on abrasive flow Machining (AFM) of FDM printed hollow truncated cone parts. Mater. Today Proc. 56, 1369–1375 (2022). https://doi.org/10.1016/j.matpr.2021.11.428

    Article  Google Scholar 

  64. Wahab Hashmi, A., Singh Mali, H., Meena, A.: Design and fabrication of a low-cost one-way abrasive flow finishing set-up using 3D printed parts. Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.04.647

    Article  Google Scholar 

  65. Hashmi, A.W., Mali, H.S., Meena, A.: An experimental investigation of viscosity of a newly developed natural polymer-based media for abrasive flow machining (AFM) of 3D printed ABS parts. J. Eng. Res. (2021). https://doi.org/10.36909/jer.13643

    Article  Google Scholar 

  66. Hashmi, A.W., Mali, H.S., Meena, A.: Experimental investigation of an innovative viscometer for measuring the viscosity of Ferrofluid. Mater. Today Proc. 50, 2037–2043 (2022)

    Article  Google Scholar 

  67. Hashmi, A.W., Mali, H.S., Meena, A., Saxena, K.K., Puerta, A.P.V., Buddhi, D.: A newly developed coal-ash-based AFM media characterization for abrasive flow finishing of FDM printed hemispherical ball shape. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-00982-2

    Article  Google Scholar 

  68. Hashmi, A.W., Mali, H.S., Meena, A., Khilji, I.A., Chilakamarry, C.R.: Experimental investigation on magnetorheological finishing process parameters. Mater. Today Proc. 48, 1892–1898 (2022)

    Article  Google Scholar 

  69. Hashmi, A.W., Mali, H.S., Meena, A., Saxena, K.K., Puerta, A.P.V., Prakash, C., Buddhi, D., Davim, J.P., Abdul-Zahra, D.S.: Understanding the mechanism of abrasive-based finishing processes using mathematical modeling and numerical simulation. Metals 12, 1328 (2022)

    Article  Google Scholar 

  70. Wahab Hashmi, A., Singh Mali, H., Meena, A.: A critical review of modeling and simulation techniques for loose abrasive based machining processes. Mater. Today Proc. 56, 2016–2024 (2022). https://doi.org/10.1016/J.MATPR.2021.11.349

    Article  Google Scholar 

  71. Hashmi, A.W., Mali, H.S., Meena, A., Khilji, I.A., Hashmi, M.F.: Machine vision for the measurement of machining parameters: a review. Mater. Today Proc. 56, 1939 (2021)

    Article  Google Scholar 

  72. Hashmi, A.W., Mali, H.S., Meena, A., Khilji, I.A., Hashmi, M.F.: Artificial intelligence techniques for implementation of intelligent machining. Mater. Today Proc. 56, 1947–1955 (2022)

    Article  Google Scholar 

  73. Dixit, N., Sharma, V., Kumar, P.: Experimental investigations into abrasive flow machining ({AFM}) of 3D printed ABS and PLA parts. Rapid Prototyp. J. (2021). https://doi.org/10.1108/RPJ-01-2021-0013

    Article  Google Scholar 

  74. Kumar, S., Jain, V.K., Sidpara, A.: Nanofinishing of freeform surfaces (knee joint implant) by rotational-magnetorheological abrasive flow finishing (R-MRAFF) process. Precis. Eng. 42, 165–178 (2015)

    Article  Google Scholar 

  75. Zhang, L., Yuan, Z., Tan, D., Huang, Y.: An improved abrasive flow processing method for complex geometric surfaces of titanium alloy artificial joints. Appl. Sci. 8, 1037 (2018)

    Article  Google Scholar 

  76. Markopoulos, A.P., Galanis, N.I., Karkalos, N.E., Manolakos, D.E.: Precision CNC machining of femoral component of knee implant: a case study. Machines 6, 10 (2018)

    Article  Google Scholar 

  77. Maji, P.K., Banerjee, P.S., Sinha, A.: Application of rapid prototyping and rapid tooling for development of patient-specific craniofacial implant: an investigative study. Int. J. Adv. Manuf. Technol. 36, 510–515 (2008)

    Article  Google Scholar 

  78. Singh, D., Singh, R., Boparai, K.S.: Development and surface improvement of FDM pattern based investment casting of biomedical implants: a state of art review. J. Manuf. Process. 31, 80–95 (2018)

    Article  Google Scholar 

  79. Denkena, B., Köhler, J., Turger, A., Helmecke, P., Correa, T., Hurschler, C.: Manufacturing conditioned wear of all-ceramic knee prostheses. Procedia CIRP 5, 179–184 (2013)

    Article  Google Scholar 

  80. Blömer, W., Steinbrück, A., Schröder, C., Grothaus, F.-J., Melsheimer, O., Mannel, H., Forkel, G., Eilers, T., Liebs, T.R., Hassenpflug, J.: A new universal, standardized implant database for product identification: a unique tool for arthroplasty registries. Arch. Orthop. Trauma Surg. 135, 919–926 (2015)

    Article  Google Scholar 

  81. Hauer, G., Leitner, L., Ackerl, M.C., Klim, S., Vielgut, I., Ehall, R., Glehr, M., Leithner, A., Sadoghi, P.: Titanium-nitride coating does not result in a better clinical outcome compared to conventional cobalt-chromium total knee arthroplasty after a long-term follow-up: a propensity score matching analysis. Coatings 10, 442 (2020)

    Article  Google Scholar 

  82. Bhandarkar, S., Dhatrak, P.: Optimization of a knee implant with different biomaterials using finite element analysis. Mater. Today Proc. 59, 459–467 (2022)

    Article  Google Scholar 

  83. Sankar, M.R., Jain, V.K., Ramkumar, J., Joshi, Y.M.: Rheological characterization of styrene-butadiene based medium and its finishing performance using rotational abrasive flow finishing process. Int. J. Mach. Tools Manuf. 51, 947–957 (2011)

    Article  Google Scholar 

  84. Gupta, G.A., Ansari, I.A., Ramkumar, J., Kar, K.K.: Rheological characterization of newly developed fly-ash mixed polymeric media and its finishing performance through abrasive flow machining. Clean. Eng. Technol. 2, 100085 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Science and Engineering Research Board, Department of Science and Technology, Government of India, for supporting this work through the grant DST-SERB EMR/2016/003372. Authors are also thankful to the material research center (MRC) at Malaviya National Institute of Technology (MNIT), Jaipur (Rajasthan), India, for providing me with AFM media characterization facilities, such as FTIR and TGA, to assess the success of my Ph.D. research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep K. Saxena.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashmi, A.W., Mali, H.S., Meena, A. et al. Design and modeling of abrasive flow finishing of freeform surfaces of FDM printed femoral component of knee implant pattern. Int J Interact Des Manuf 17, 2507–2526 (2023). https://doi.org/10.1007/s12008-022-01048-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-01048-z

Keywords

Navigation