Skip to main content
Log in

Fatigue testing experimentation of a composite blade prototype of 712 mm in length

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

In this article, the performance of the composite materials of a blade prototype in terms of stiffness and mechanical strength by applying a set of load levels in the direction of flapwise loading in order to quantify and characterize the degradation of stiffness structure as a function of loading rate and number of cycles. In this concordance, a test bench was designed in CATIA V5 and manufactured and assembled in our laboratory in order to test the blade of 712 mm in length in bending to characterize the structure in terms of fatigue resistance, damage tolerance and several propositions to improve the overall blade composite structure. In fact, a bench have been designed and manufactured to test the mechanical charactristics of the blade composite structure. The results would be obtained used this experimental strategy is performed in this brief review. The mechanical testing of the blade is performed in the case of secure and structural health of the blades during the blade manufacturing. The validation of our experimental results are performed based on our previous studies of numerical simualtions of a blade composite materials of 2.5 m in length.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

C:

Chord length (mm)

NACA:

National Advisory Committee for Aeronautics

CATIA:

Computer Aided Three-Dimensional Interactive Application

3D Impression:

Three dimensions impression

CNC:

Computer Numerical Control

HAWT:

Horizontal Axis Wind Turbine Blade

References

  1. Mansour, M., Tsongas, K., Tzetzis, D., Antoniadis, A.: Mechanical and dynamic behavior of fused filament fabrication 3d printed polyethylene terephthalate glycol reinforced with carbon fibers. Polym.-Plast. Technol. Eng. 57(16), 1715–1725 (2018)

    Article  Google Scholar 

  2. Shokrieh, M.M., Rafiee, R.: Simulation of fatigue failure in a full composite wind turbine blade. Compos. Struct. 74(3), 332–342 (2006)

    Article  Google Scholar 

  3. Rajad, O., Mounir, H.: A review on the hawctb performance enhancement methods, numerical models and ai concept used for the blade composite structure assessment: Context of new industry 5.0. pages 1–6 (Nov 2021)

  4. Ji, R., Zhao, L., Wang, K., Liu, F., Gong, Y., Zhang, J.: Effects of debonding defects on the postbuckling and failure behaviors of composite stiffened panel under uniaxial compression. Compos. Struct. 256, 113121 (2021)

    Article  Google Scholar 

  5. Lambert, J., Chambers, A.R., Sinclair, I., Spearing, S.M.: 3d damage characterisation and the role of voids in the fatigue of wind turbine blade materials. Compos. Sci. Technol. 72(2), 337–343 (2012)

    Article  Google Scholar 

  6. Xin, L., Yang, J., Wu, L., Han, G., Guan, Z.: Finite element analysis of unidirectional composite elastic constants predictions considering interface. pages 29–34 (July 2016)

  7. Bazilevs, Y., Hsc, M.-C., Kiendl, J., Wüchner, R., Bletzinger, K.-U.: 3d simulation of wind turbine rotors at full scale. part ii: Fluid–structure interaction modeling with composite blades. Int. J. Numer. Meth. Fluids 65(1–3), 236–253 (2011)

    Article  MATH  Google Scholar 

  8. Fertahi, S., Bouhal, T., Omar Rajad, T., Kousksou, A.A., El Rhafiki, T., Jamil, A., Benbassou, A., et al.: Cfd performance enhancement of a low cut-in speed current vertical tidal turbine through the nested hybridization of savonius and darrieus. Energy Convers. Manage. 169, 266–278 (2018)

    Article  Google Scholar 

  9. de Freitas Pinto, R.L.U., Gonçalves, B.P.F.: A revised theoretical analysis of aerodynamic optimization of horizontal-axis wind turbines based on bem theory. Renewable Energy 105, 625–636 (2017)

    Article  Google Scholar 

  10. El Alaoui, R., Mounir, H., Boudi, E.M., El Marjani, A., Echab, H., Mohsine, A.: Performances comparison of wind turbine blades materials. pages 375–380, (2016)

  11. Wang, W.-C., Teah, H.-Y.: Life cycle assessment of small-scale horizontal axis wind turbines in taiwan. J. Clean. Prod. 141(Supplement C), 492–501 (2017)

    Article  Google Scholar 

  12. Liu, X., Cheng, L., Li, G., Godbole, A., Chen, Y.: Effects of aerodynamic damping on the tower load of offshore horizontal axis wind turbines. Appl. Energy 204(Supplement C), 1101–1114 (2017)

    Article  Google Scholar 

  13. Wang, L., Kolios, A., Nishino, T., Delafin, P.-L., Bird, T.: Structural optimisation of vertical-axis wind turbine composite blades based on finite element analysis and genetic algorithm. Compos. Struct. 153(Supplement C), 123–138 (2016)

    Article  Google Scholar 

  14. Chen, X., Haselbach, P.U., Branner, K., Madsen, S.H.: Effects of different material failures and surface contact on structural response of trailing edge sections in composite wind turbine blades. Compos. Struct. 226, 111306 (2019)

    Article  Google Scholar 

  15. Chen, X., Zhao, W., Zhao, X.L., Jian Zhong, X.: Preliminary failure investigation of a 52.3m glass/epoxy composite wind turbine blade. Eng. Fail. Anal. 44, 345–350 (2014)

    Article  Google Scholar 

  16. El Gadari, M., Fatu, A., Hajjam, M.: Shaft roughness effect on elasto-hydrodynamic lubrication of rotary lip seals: experimentation and numerical simulation. Tribol. Int. 88, 218 –227 (2015). https://doi.org/10.1016/j.triboint.2015.03.013

  17. Chen, X., Berring, P., Madsen, S.H., Branner, K., Semenov, S.: Understanding progressive failure mechanisms of a wind turbine blade trailing edge section through subcomponent tests and nonlinear fe analysis. Compos. Struct. 214, 422–438 (2019)

    Article  Google Scholar 

  18. Rajad, O., Mounir, H., El Marjani, A., et al (2022) Nonlinear modeling analysis of the coupled mechanical strength and stiffness enhancement of composite materials of a horizontal axis wind turbine blade (hawtb). International Journal on Interactive Design and Manufacturing (IJIDeM), pages 1–24

  19. Rajad, O., Mounir, H., El Marjani, A.: Modeling, understanding and enhancing the mechanical response of the hawtb composite structure through the nonlinear fe analysis of a proposed sub-model. International Journal on Interactive Design and Manufacturing (IJIDeM) 15(4), 631–659 (2021)

    Article  Google Scholar 

  20. Wang, J., Huang, X., Wei, C., Zhang, L., Li, C., Liu, W.: Failure analysis at trailing edge of a wind turbine blade through subcomponent test. Engineering Failure Analysis, page 105596, (2021)

  21. Lahuerta, F., Koorn, N., Smissaert, D.: Wind turbine blade trailing edge failure assessment with sub-component test on static and fatigue load conditions. Compos. Struct. 204, 755–766 (2018)

    Article  Google Scholar 

  22. Nachtane, M., Tarfaoui, M., Ledoux, Y., Khammassi, S., Leneveu, E., Pelleter, J.: Experimental investigation on the dynamic behavior of 3d printed cf-pekk composite under cyclic uniaxial compression. Compos. Struct. 247, 112474 (2020)

    Article  Google Scholar 

  23. Rouway, M., Nachtane, M., Tarfaoui, M., Nabil Chakhchaoui, L., Omari, F.F., Cherkaoui, O.: 3d printing: rapid manufacturing of a new smallscale tidal turbine blade. The International Journal of Advanced Manufacturing Technology 115, 07 (2021)

    Article  Google Scholar 

  24. Bassett, K., Carriveau, R., Ting, D.S.-K.: 3d printed wind turbines part 1: Design considerations and rapid manufacture potential. Sustainable Energy Technol. Assess. 11, 186–193 (2015)

    Article  Google Scholar 

  25. Kang, S.K., Kim, Y., Lee, J., Khosronejad, A., Yang, X.: Wake interactions of two horizontal axis tidal turbines in tandem. Ocean Eng. 254, 111331 (2022)

    Article  Google Scholar 

  26. Rouway, M., Tarfaoui, M., Chakhchaoui, N., El Hachemi Omari, L., Fraija, F., Cherkaoui, O.: Additive manufacturing and composite materials for marine energy: Case of tidal turbine. 3D Printing and Additive Manufacturing, 0(0):null, 0

  27. Tarfaoui, M., Shah, O.R., Nachtane, M.: Design and Optimization of Composite Offshore Wind Turbine Blades. J. Energy Res. Technol. 141(5), 051204 (2019)

    Article  Google Scholar 

  28. Amenabar, I., Mendikute, A., López-Arraiza, A., Lizaranzu, M., Aurrekoetxea, J.: Comparison and analysis of non-destructive testing techniques suitable for delamination inspection in wind turbine blades. Compos. B Eng. 42(5), 1298–1305 (2011)

    Article  Google Scholar 

  29. TS IEC. 61400-23 “wind turbine generator systems–part 23: Full-scale structural testing of rotor blades” (2001)

  30. Germanischer-lloyd (gl) design standard, guideline for the certification of wind turbines edition. (2010)

  31. Kumar, V.M., Nageswara Rao, B., Farooq, S.: Modeling and analysis of wind turbine blade with advanced materials by simulation. Int. J. Appl. Eng. Res. 11(6), 4491–4499 (2016)

  32. Rajad, O., Hamid, M., Fertahi, S.E., Marjani, A. E.: Fiber orientation effect on the behavior of the composite materials of the horizontal axis wind turbine blade (hawtb). pages 1–6, (2018)

  33. Kam, T.Y., Su, H.M., Huang, C.Y.: Quasi-static buckling and first-ply failure loads of shear web reinforced glass-fabric composite wind blades. Compos. Struct. 160(Supplement C), 1225–1235 (2017)

    Article  Google Scholar 

  34. Airfoil tools, http://airfoiltools.com (2022)

  35. Su, H.M., Kam, T.Y.: Reliability analysis of composite wind turbine blades considering material degradation of blades. Compos. Struct. 234, 111663 (2020)

    Article  Google Scholar 

  36. Kam, T.Y., Chiu, Y.H.: Progressive failure of composite wind blades with a shear-web spar subjected to static testing. IOP Conference Series: Materials Science and Engineering 211, 012012 (2017)

  37. Rajad, O., Mounir, H.: The stiffness assessment of the blade composite structure using a proposed sub-model arbitrary rectangular with delamination effect. Int J Interact Des Manuf, (2022)

  38. Hardee, C.: Sweep-twist design offers higher output at lower load, https://www.renewableenergyworld.com/wind-power/sweep-twist-design-offers-higher-output-at-lower-load/#gref. (2012)

Download references

Acknowledgements

This research was not supported by any public, commercial, or not-for-profit company.

Author information

Authors and Affiliations

Authors

Contributions

OMAR RAJAD: Conceptualization, Methodology, Software, Design and Manufacturing, Investigation, Visualization and Writing-original draft. HAMID MOUNIR: Supervision, Methodology, Reviewing and commenting the paper. OMAR RAJAD and MOHAMMED LAMRHARI conceived the reinforcement of idea of the manuscript. YASSINE AMADANE: Reviewing.

Corresponding author

Correspondence to Omar Rajad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajad, O., Mounir, H., Lamrhari, M. et al. Fatigue testing experimentation of a composite blade prototype of 712 mm in length. Int J Interact Des Manuf 17, 775–785 (2023). https://doi.org/10.1007/s12008-022-00999-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-00999-7

Keywords

Navigation