Skip to main content

Parametric study and optimization of specific wear of a novel porcine bone reinforced hybrid composite on dry sliding wear apparatus: a RSM based design approach

Abstract

Tribological property like specific wear play a significant role in the development of composites, and composites with improved tribological properties are desirable. In the present work a novel composite was prepared using the powder of the porcine bones (which are treated as biological waste) as the filler, and alkali-treated jute fiber. The specific wear of the developed hybrid composites has not yet been explored. Therefore, an attempts has been made to determine the effect of various dry sliding parameters namely, sliding velocity, sliding distance, and normal load, on the surface topography and specific wear of the developed hybrid composite. 20 experimental runs were performed on the basis of Central composite design (CCD) and Response surface methodology (RSM) was used to develop the statistical model for predicting the specific wear. Analysis of variance (ANOVA) was performed at a confidence interval of 95% to study the influence of significant parameters (p < 0.05) on specific wear (Wr). The study revealed that the sliding distance had the most significant influence of 38.5% on specific wear. Whereas, normal load had 18.6% indolence on Wr, and sliding velocity was 16.8%. Optimization was performed using genetic algorithm toolbox and it was found that the specific wear of the developed composite was reduced by 36.8%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Zhang, S.W.: State-of-the-art of polymer tribology. Tribol. Int. 31, 49–60 (1998). https://doi.org/10.1016/S0301-679X(98)00007-3

    Article  Google Scholar 

  2. Singh, S., Singh, G., Prakash, C., Ramakrishna, S.: Current status and future directions of fused filament fabrication. J. Manuf. Process. 55, 288–306 (2020). https://doi.org/10.1016/j.jmapro.2020.04.049

    Article  Google Scholar 

  3. Singh, S., Singh, G., Prakash, C., Ramakrishna, S., Lamberti, L., Pruncu, C.I.: 3D printed biodegradable composites: an insight into mechanical properties of PLA/chitosan scaffold. Polym. Test. 89, 106722 (2020). https://doi.org/10.1016/j.polymertesting.2020.106722

    Article  Google Scholar 

  4. El-Tayeb, N.S.M.: Two-body abrasive behaviour of untreated SC and R-G fibres polyester composites. Wear 266, 220–232 (2009). https://doi.org/10.1016/j.wear.2008.06.018

    Article  Google Scholar 

  5. Almeida Jr, J.H.S., Amico, S.C., Botelho, E.C., Amado, F.D.R.: Hybridization effect on the mechanical properties of curaua/glass fiber composites. Compos. Part B Eng. 55, 492–497 (2013). https://doi.org/10.1016/j.compositesb.2013.07.014

    Article  Google Scholar 

  6. Kumar, G.R., Hariharan, V., Saravanakumar, S.S.: Enhancing the free vibration characteristics of epoxy polymers using sustainable phoenix sp. fibers and nano-clay for machine tool applications. J. Nat. Fibers. 18, 531–538 (2021). https://doi.org/10.1080/15440478.2019.1636740

    Article  Google Scholar 

  7. Veerasimman, A., Shanmugam, V., Rajendran, S., Johnson, D.J., Subbiah, A., Koilpichai, J., Marimuthu, U.: Thermal properties of natural fiber sisal based hybrid composites–a brief review. J. Nat. Fibers. 00, 1–11 (2021). https://doi.org/10.1080/15440478.2020.1870619

    Article  Google Scholar 

  8. Suriani, M.J., Ilyas, R.A., Zuhri, M.Y.M., Khalina, A., Sultan, M.T.H., Sapuan, S.M., Ruzaidi, C.M., Wan, F.N., Zulkifli, F., Harussani, M.M.: Critical review of natural fiber reinforced hybrid composites: processing, properties, applications and cost. Polymers (Basel). 13, 3514 (2021). https://doi.org/10.3390/polym13203514

    Article  Google Scholar 

  9. Pandey, A., Singh, G., Singh, S., Jha, K., Prakash, C.: 3D printed biodegradable functional temperature-stimuli shape memory polymer for customized scaffoldings. J. Mech. Behav. Biomed. Mater. 108, 103781 (2020). https://doi.org/10.1016/j.jmbbm.2020.103781

    Article  Google Scholar 

  10. Mohanavel, V., Raja, T., Yadav, A., Ravichandran, M., Winczek, J.: Evaluation of mechanical and thermal properties of jute and ramie reinforced epoxy-based hybrid composites. J. Nat. Fibers. 00, 1–11 (2021). https://doi.org/10.1080/15440478.2021.1958432

    Article  Google Scholar 

  11. Agrebi, F., Hammami, H., Asim, M., Jawaid, M., Kallel, A.: Impact of silane treatment on the dielectric properties of pineapple leaf/kenaf fiber reinforced phenolic composites. J. Compos. Mater. 54, 937–946 (2020). https://doi.org/10.1177/0021998319871351

    Article  Google Scholar 

  12. Kamble, Z., Behera, B.K.: Sustainable hybrid composites reinforced with textile waste for construction and building applications. Constr. Build. Mater. 284, 122800 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122800

    Article  Google Scholar 

  13. Prakash, C., Singh, G., Singh, S., Linda, W.L., Zheng, H.Y., Ramakrishna, S., Narayan, R.: Mechanical reliability and in vitro bioactivity of 3D-printed porous polylactic acid-hydroxyapatite scaffold. J. Mater. Eng. Perform. 30, 4946–4956 (2021)

    Article  Google Scholar 

  14. Subramanian, K., Nagarajan, R., Sukumaran, J., Thangiah, W., De Baets, P.: Dry sliding wear properties of Jute/polymer composites in high loading applications. In: Synergy 2015 international conference. pp. 7–18. Szent István University. Faculty of Mechanical Engineering (2015).

  15. Durowaye, S., Lawal, G., Sekunowo, O.: Synthesis and characterization of hybrid polypropylene matrix composites reinforced with carbonized Terminalia catappa shell particles and Turritela communis shell particles. J. Taibah Univ. Sci. ISSN (2018). https://doi.org/10.1080/16583655.2018.1451112

    Article  Google Scholar 

  16. Jagadeesh, V., Venkatasubbaiah, K., Naidu, A.L.: Experimental study on mechanical behavior of natural hybrid composites filled with ground nut shell ash. Mech. Mech. Eng. 23, 218–227 (2019). https://doi.org/10.2478/mme-2019-0029

    Article  Google Scholar 

  17. Prasad, V., Joy, A., Venkatachalam, G., Narayanan, S., Rajakumar, S.: Finite element analysis of jute and banana fibre reinforced hybrid polymer matrix composite and optimization of design parameters using ANOVA technique. Procedia Eng. 97, 1116–1125 (2014). https://doi.org/10.1016/j.proeng.2014.12.390

    Article  Google Scholar 

  18. Baig, M.M.A., Samad, M.A.: Epoxy\epoxy composite\epoxy hybrid composite coatings for tribological applications—a review. Polymers (2021). https://doi.org/10.3390/polym13020179

    Article  Google Scholar 

  19. Suresha, B.: The role of fillers on friction and slide wear characteristics in glass-epoxy composite systems. J. Miner. Mater. Charact. Eng. 5, 87 (2006). https://doi.org/10.4236/jmmce.2006.51006

    Article  Google Scholar 

  20. Suresha, B., Chandramohan, G., Samapthkumaran, P., Seetharamu, S., Vynatheya, S.: Friction and wear characteristics of carbon-epoxy and glass-epoxy woven roving fiber composites. J. Reinf. Plast. Compos. 25, 771–782 (2006). https://doi.org/10.1177/0731684406063540

    Article  Google Scholar 

  21. Das, S.C., Paul, D., Grammatikos, S.A., Siddiquee, M.A.B., Papatzani, S., Koralli, P., Islam, J.M.M., Khan, M.A., Shauddin, S.M., Khan, R.A.: Effect of stacking sequence on the performance of hybrid natural/synthetic fiber reinforced polymer composite laminates. Compos. Struct. 276, 114525 (2021). https://doi.org/10.1016/j.compstruct.2021.114525

    Article  Google Scholar 

  22. Şap, E., Usca, U.A., Gupta, M.K., Kuntoğlu, M.: Tool wear and machinability investigations in dry turning of Cu/Mo-SiCp hybrid composites. Int. J. Adv. Manuf. Technol. 114, 379–396 (2021). https://doi.org/10.1007/s00170-021-06889-8

    Article  Google Scholar 

  23. Basavarajappa, S., Ellangovan, S.: Dry sliding wear characteristics of glass-epoxy composite filled with silicon carbide and graphite particles. Wear 296, 491–496 (2012). https://doi.org/10.1016/j.wear.2012.08.001

    Article  Google Scholar 

  24. Rajashekaraiah, H., Bheemappa, S., Yang, S.H., Mohan, S.: Abrasive wear behaviour of thermoplastic copolyester elastomer composites: a statistical approach. Int. J. Precis. Eng. Manuf. 17, 755–763 (2016). https://doi.org/10.1007/s12541-016-0093-x

    Article  Google Scholar 

  25. Oledele, I.O., Isola, B.A.: Development of bone particulate reinforced epoxy composite for biomedical application. J. Appl. Biotechnol. Bioeng. (2016). https://doi.org/10.15406/jabb.2016.01.00006

    Article  Google Scholar 

  26. Owuamanam, S., Cree, D.: Progress of bio-calcium carbonate waste eggshell and seashell fillers in polymer composites: a review. J. Compos. Sci. 4, 70 (2020). https://doi.org/10.3390/jcs4020070

    Article  Google Scholar 

  27. Rajan, B.S., Balaji, M.A.S., AB, M.A.N.: Effect of silane surface treatment on the physico-mechanical properties of shell powder reinforced epoxy modified phenolic friction composite. Mater. Res. Express. 6, 65315 (2019). Doi: https://doi.org/10.1088/2053-1591/ab0ca5.

  28. Dikshit, I., Bhushan, G.: Development of an innovant carbon/jute porcine-bone hybrid material for sustainable composite manufacturing. Polym. Compos. 43, 2419–2430 (2022). https://doi.org/10.1002/pc.26551

    Article  Google Scholar 

  29. Dikshit, I., Bhushan, G.: Experimental investigations and optimization of tensile and impact strength of a novel composite reinforced with carbon jute and porcine bone powder. Polym. Compos. 43, 3915–3928 (2022). https://doi.org/10.1002/pc.26666

    Article  Google Scholar 

  30. Sezgin, H., Berkalp, O.B.: The effect of hybridization on significant characteristics of jute/glass and jute/carbon-reinforced composites. J. Ind. Text. 47, 283–296 (2017). https://doi.org/10.1177/1528083716644290

    Article  Google Scholar 

  31. Baiardo, M., Zini, E., Scandola, M.: Flax fibre–polyester composites. Compos. Part A Appl. Sci. Manuf. 35, 703–710 (2004). https://doi.org/10.1016/j.compositesa.2004.02.004

    Article  Google Scholar 

  32. Bajpai, P.K., Singh, I., Madaan, J.: Frictional and adhesive wear performance of natural fibre reinforced polypropylene composites. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 227, 385–392 (2013). https://doi.org/10.1177/1350650112461868

    Article  Google Scholar 

  33. Yallew, T.B., Kumar, P., Singh, I.: Sliding wear properties of jute fabric reinforced polypropylene composites. Procedia Eng. 97, 402–411 (2014). https://doi.org/10.1016/j.proeng.2014.12.264

    Article  Google Scholar 

  34. Batra, N., Singh, R.P., Dikshit, I.: Experimental investigations and statistical modeling of specific wear and coefficient of friction in a novel carbon fiber reinforced composite. Int. J. Surf. Eng. Interdiscip. Mater. Sci. 10, 1–17 (2021)

    Google Scholar 

  35. Singh, S., Singh, G., Sandhu, K., Prakash, C., Singh, R.: Investigating the optimum parametric setting for MRR of expandable polystyrene machined with 3D printed end mill tool. Mater. Today Proc. 33, 1513–1517 (2020). https://doi.org/10.1016/j.matpr.2020.03.465

    Article  Google Scholar 

  36. Singh, R.P., Mohan, P., Ranjan, A.: An in-vitro study of temperature rise during rotary ultrasonic bone drilling of human bone. Med. Eng. Phys. 79, 33–43 (2020). https://doi.org/10.1016/j.medengphy.2020.03.002

    Article  Google Scholar 

  37. Singh, R.P., Pandey, P.M., Mridha, A.R., Joshi, T.: Experimental investigations and statistical modeling of cutting force and torque in rotary ultrasonic bone drilling of human cadaver bone. Proc. IMechE Part H J Eng. Med. 234, 148–162 (2020). https://doi.org/10.1177/0954411919889913

    Article  Google Scholar 

  38. Kumar, R., Dikshit, I., Verma, A.: Experimental investigations and statistical modelling of dilution rate and area of penetration in submerged arc welding of SS316-L. Mater. Today Proc. 44, 3997–4003 (2020). https://doi.org/10.1016/j.matpr.2020.10.201

    Article  Google Scholar 

  39. Batra, N.K., Singh, R.P., Dayal, S.: Experimental investigation and statistical modelling of cutting speed in AL6063-W composite by wire EDM process. Mater. Today Proc. 62, 1408–1412 (2022). https://doi.org/10.1016/j.matpr.2021.12.418

    Article  Google Scholar 

  40. Pal Singh, R., Batra, N.K., Dayal, S.: Influence of machining parameters on surface roughness in AL6063-W composite by wire EDM process: experimental investigations and process optimization. Mater. Today Proc. 63, 192–196 (2022). https://doi.org/10.1016/j.matpr.2022.02.462

    Article  Google Scholar 

  41. Montgomery, D.C.: Design and Analysis of Experiments Eighth Edition. (2013).

  42. Dikshit, I., Bhushan, G., Singh, R.P., Batra, N.K.: Statistical modeling and optimization of density in a novel carbon/jute fiber reinforced hybrid composite. Mater. Today Proc. 63, 259–263 (2022). https://doi.org/10.1016/j.matpr.2022.03.052

    Article  Google Scholar 

  43. Rahiman, A.H.S., Smart, D.S.R., Wilson, B., Ebrahim, I., Eldhose, B., Mathew, B., Murickan, R.T.: Dry sliding wear analysis OF Al5083/CNT/Ni/MoB hybrid composite using DOE Taguchi method. Wear 460–461, 203471 (2020). https://doi.org/10.1016/j.wear.2020.203471

    Article  Google Scholar 

  44. Sampathkumaran, P., Seetharamu, S., Vynatheya, S., Murali, A., Kumar, R.K.: SEM observations of the effects of velocity and load on the sliding wear characteristics of glass fabric–epoxy composites with different fillers. Wear 237, 20–27 (2000). https://doi.org/10.1016/S0043-1648(99)00300-2

    Article  Google Scholar 

  45. Wieleba, W.: The mechanism of tribological wear of thermoplastic materials. Arch. Civ. Mech. Eng. 7, 185–199 (2007). https://doi.org/10.1016/S1644-9665(12)60236-2

    Article  Google Scholar 

  46. Kumaresan, K., Chandramohan, G., Senthilkumar, M., Suresha, B., Indran, S.: Dry sliding wear behaviour of carbon fabric-reinforced epoxy composite with and without silicon carbide. Compos. Interfaces. 18, 509–526 (2011). https://doi.org/10.1163/156855411X610241

    Article  Google Scholar 

  47. Nayak, A., Jesthi, D.K., Routara, B.C., Das, D., Nayak, R.K.: Tribological properties of glass/carbon hybrid composites through inter-ply arrangement using response surface methodology. Mater. Today Proc. 5, 19828–19835 (2018). https://doi.org/10.1016/j.matpr.2018.06.346

    Article  Google Scholar 

  48. Dass, K., Chauhan, S.R., Gaur, B.: Study on mechanical and dry sliding wear characteristics of meta-cresol novalac epoxy composites filled with silicon carbide, aluminum oxide, and zinc oxide particulates. Tribol. Trans. 57, 157–172 (2014). https://doi.org/10.1080/10402004.2013.861049

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iti Dikshit.

Ethics declarations

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dikshit, I., Bhushan, G. Parametric study and optimization of specific wear of a novel porcine bone reinforced hybrid composite on dry sliding wear apparatus: a RSM based design approach. Int J Interact Des Manuf (2022). https://doi.org/10.1007/s12008-022-00997-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-022-00997-9

Keywords

  • Hybrid composite specific wear
  • RSM
  • ANOVA
  • Optimization