Skip to main content
Log in

Experimental investigation and parametric optimization of a milling process using multi-criteria decision making methods: a comparative analysis

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

This paper deals with exploring the influences of cutting speed, feed rate and depth of cut on material removal rate (MRR) and average surface roughness (Ra) during milling operation of aluminum 1100 alloy work material. The experiments are conducted based on Taguchi’s L8 design plan. It is noticed that MRR increases and Ra deteriorates with higher cutting speed and feed rate. Thus, it becomes imperative to deploy multi-criteria decision making (MCDM) tools to identify the most appropriate combination of the considered milling parameters leading to a compromise solution resulting in higher MRR and lower Ra. Six popular MCDM techniques in the form of weighted sum model, weighted product model, weighted aggregated sum product assessment, multi-objective optimization on the basis of ratio analysis, evaluation based on distance from average solution and technique for order preference by similarity to the ideal solution are employed and comprehensively assessed here to search out the optimal machining condition for the said process. It is revealed that most of the adopted MCDM techniques are successful in identifying the corresponding compromise solution. Excellent values of Spearman’s rank correlation (≥ 0.93) prove high similarities between the ranking patterns derived using the considered MCDM techniques, except weighted sum model. It can be revealed from the detailed analysis that higher MRR can be obtained at an optimal parametric combination of cutting speed = 210 rpm, feed rate = 40 mm/min and depth of cut = 0.4 mm. On the other hand, an optimal parametric intermix of cutting speed = 170 rpm, feed rate = 40 mm/min and depth of cut = 0.4 mm would lead to better surface quality of the machined components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AHP:

Analytic Hierarchy Process

BBD:

Box–Behnken Design

CFRP:

Carbon Fiber Reinforced Polymer

COPRAS:

COmplex PRoportional ASsessment

DOC:

Depth of cut

GFRP:

Glass Fiber Reinforced Polymer

MABAC:

Multi-Attributive Border Approximation area Comparison

MARICA:

Multi-Attributive Real–Ideal Comparative Analysis

MOORA:

Multi-Objective Optimization on the basis of Ratio Analysis

MRR:

Material Removal Rate

OA:

Orthogonal Array

PIV:

Proximity Valued Index

SECA:

Simultaneous Evaluation of Criteria and Alternatives

TOPSIS:

Technique for Order Preference by Similarity to the Ideal Solution

WPM:

Weighted Product Model

ARAS:

Additive Ratio ASsessment

CCD:

Central Composite Design

CoCoSo:

Combined Compromise Solution

DFA:

Desirability Function Approach

EDAS:

Evaluation based on Distance from Average Solution

GRA:

Grey Relational Analysis

MARCOS:

Measurement Alternatives and Ranking according to COmpromise Solution

MCDM:

Multi-Criteria Decision Making

MMC:

Metal Matrix Composite

NSGA-II:

Non-dominated Sorting Genetic Algorithm-II

PCA:

Principal Component Analysis

Ra:

Average Surface Roughness

SWARA:

Step-wise Weight Assessment Ratio Analysis

WASPAS:

Weighted Aggregated Sum Product Assessment

WSM:

Weighted Sum Model

λ :

A constant (0 ≤ λ ≤ 1)

AV j :

Average solution for jth criterion

d j :

Degree of diversity for jth criterion

M :

Number of alternatives (experimental trials)

n ij :

Normalized value of xij

NDA ij :

Negative distance from average solution

NSP :

Normalized value of SP

r ij :

Element of weighted normalized decision matrix

S i :

Distance of ith alternative from the ideal worst solution

S i WPM :

Overall score for WPM method

SN :

Weighted sum of NDA

w j :

Weight of jth criterion

y i :

Overall score for MOORA method

AS i :

Appraisal score for EDAS method

CC i :

Closeness coefficient of ith alternative

e j :

Entropy value for jth criterion

n :

Number of criteria (responses)

\(n^{\prime}_{ij}\) :

Vector normalized value of xij

NSN :

Normalized value of SN

PDA ij :

Positive distance from average solution

S i + :

Distance of ith alternative from the ideal best solution

S i WASPAS :

Overall score for WASPAS method

S i WSM :

Overall score for WSM method

SP :

Weighted sum of PDA

x ij :

Performance measure of ith alternative against jth criterion

References

  1. Chandrasekaran, M., Muralidhar, M., Krishna, C.M., Dixit, U.S.: Application of soft computing techniques in machining performance prediction and optimization: a literature review. Int. J. Adv. Manuf. Technol. 46, 445–464 (2010)

    Article  Google Scholar 

  2. Xu, F., Zhu, J.J., Zang, X.J., Wu, X.: Rapid parameter optimization of high-speed milling aluminum alloy thin-walled workpiece. Key Eng. Mater. 431–432, 41–44 (2010)

    Article  Google Scholar 

  3. Pusavec, F., Kopac, J.: Achieving and implementation of sustainability principles in machining processes. J. Adv. Prod. Eng. Manag. 3(4), 58–69 (2009)

    Google Scholar 

  4. Aruldoss, M., Lakshmi, T.M., Venkatesan, V.R.: A survey on multi criteria decision making methods and its applications. Am. J. Inf. Syst. 1(1), 31–43 (2013)

    Google Scholar 

  5. MacCrimmon, K.R.: Decision making among multiple-attribute alternatives: a survey and consolidated approach. No. RM-4823-ARPA, Rand Corp Santa Monica USA (1968)

  6. Miller, D., Starr, M.: Executive Decisions and Operations Research. Prentice-Hall, Englewood Cliffs (1969)

    Google Scholar 

  7. Zavadskas, E.K., Antucheviciene, J., Saparauskas, J., Turskis, Z.: MCDM methods WASPAS and MULTIMOORA: verification of robustness of methods when assessing alternative solutions. Econom. Comput. Econom. Cybern. Stud. Res. 47(2), 5–20 (2013)

    Google Scholar 

  8. Chakraborty, S.: Applications of the MOORA method for decision making in manufacturing environment. Int. J. Adv. Manuf. Technol. 54, 1155–1166 (2011)

    Article  Google Scholar 

  9. Ghorabaee, M.K., Zavadskas, E.K., Olfat, L., Turskis, Z.: Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica 26, 435–451 (2015)

    Article  Google Scholar 

  10. Hwang, C.-L., Yoon, K.: Methods for multiple attribute decision making. In: Multiple Attribute Decision Making. Lecture Notes in Economics and Mathematical Systems, pp. 58–191. Springer, Berlin, Heidelberg (1981). https://doi.org/10.1007/978-3-642-48318-9_3

  11. Yang, L., DeVor, R.E., Kapoor, S.G.: Analysis of force shape characteristics and detection of depth-of-cut variations in end milling. J. Manuf. Sci. Eng. 127(3), 454–462 (2005)

    Article  Google Scholar 

  12. Zavadskas, E.K., Kaklauskas, A., Turskis, Z., Tamošaitien, J.: Selection of the effective dwelling house walls by applying attributes values determined at intervals. J. Civ. Eng. Manag. 14, 85–93 (2008)

    Article  Google Scholar 

  13. Zavadskas, E.K., Turskis, Z.: A new additive ratio assessment (ARAS) method in multicriteria decision-making. Technol. Econ. Dev. Econ. 16(2), 159–172 (2010)

    Article  Google Scholar 

  14. Najiha, M.S., Rahman, M.M., Kadirgama, K.: Experimental investigation and optimization of minimum quantity lubrication for machining of AA6061-T6. Int. J. Autom. Mech. Eng. 11, 2722–2737 (2015)

    Google Scholar 

  15. Gopal, P.M., Soorya Prakash, K.: Minimization of cutting force, temperature and surface roughness through GRA, TOPSIS and Taguchi techniques in end milling of Mg hybrid MMC. Measurement 116, 178–192 (2018)

    Article  Google Scholar 

  16. Parvez, W., Kumar, V.: Multi response optimization using gray relation analysis for milling zirconia ceramic material. J. Emerg. Technol. Innov. Res. 5(8), 523–528 (2018)

    Google Scholar 

  17. Khan, A.M., Jamil, A.M., Salonitis, K., Sarfraz, S., Zhao, W., He, N., Mia, M., Zhao, G.L.: Multi-objective optimization of energy consumption and surface quality in nanofluid SQCL assisted face milling. Energies 12, 710 (2019)

    Article  Google Scholar 

  18. Yaser, E.K.M., Shunmugesh, K.: Multi-objective optimization of milling process parameters in glass fibre reinforce polymer via grey relational analysis and desirability function. Mater. Today Proc. 11, 1015–1023 (2019)

    Article  Google Scholar 

  19. Singh, O.P., Kumar, G., Kumar, M.: Multi performance optimization of shoulder milling process parameters of AA6063 T6 aluminium alloy by Taguchi based GRA. Int. J. Innov. Technol. Explor. Eng. 8(10S), 420–425 (2019)

    Article  Google Scholar 

  20. Kumar, J., Verma, R.K.: Experimental investigations and multiple criteria optimization during milling of graphene oxide (GO) doped epoxy/CFRP composites using TOPSIS-AHP hybrid module. FME Trans. 48, 628–635 (2020)

    Article  Google Scholar 

  21. Singh, A., Shivakoti, I., Mustafa, Z., Phipon, R., Sharma, A.: TOPSIS based selection of optimal end milling process parameters. In: AIP Conference Proceedings, vol. 2273, p. 050071 (2020)

  22. Zeelanbasha, N., Senthil, V., Mahesh, G.: A hybrid approach of NSGA-II and TOPSIS for minimising vibration and surface roughness in machining process. Int. J. Oper. Res. 38(2), 221–254 (2020)

    Article  Google Scholar 

  23. Kumar, M.B., Sathiya, P., Parameshwaran, R.: Parameters optimization for end milling of Al7075-ZrO2-C metal matrix composites using GRA and ANOVA. Trans. Indian Inst. Met. 73(11), 2931–2946 (2020)

    Article  Google Scholar 

  24. Cica, D., Caliskan, H., Panjan, P., Kramar, D.: Multi-objective optimization of hard milling using Taguchi based grey relational analysis. Tech. Gaz. 27(2), 513–519 (2020)

    Google Scholar 

  25. Wang, Z., Li, L.: Optimization of process parameters for surface roughness and tool wear in milling TC17 alloy using Taguchi with grey relational analysis. Adv. Mech. Eng. 13(2), 1–8 (2021)

    Article  Google Scholar 

  26. Kumar, R., Katyal, P., Kumar, K., Singh, V.: Multiresponse optimization of end milling process parameters on ZE41A Mg alloy using Taguchi and TOPSIS approach. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.08.271

    Article  Google Scholar 

  27. Sharma, A., Islam, A., Sharma, K., Singh, P.K.: Optimization techniques to optimize the milling operation with different parameters for composite of AA 3105. Mater. Today Proc. 43, 224–230 (2021)

    Article  Google Scholar 

  28. Nisar, L., Banday, B., Amatullah, M., Farooq, M., Thoker, A.N., Maqbool, A., Wahid, M.A.: An investigation on effect of process parameters on surface roughness and dimensional inaccuracy using grey based Taguchi method. Mater. Today Proc. 46, 6564–6569 (2021)

    Article  Google Scholar 

  29. Trung, D.D.: Application of EDAS, MARCOS, TOPSIS, MOORA and PIV methods for multi-criteria decision making in milling process. J. Mech. Eng. 71(2), 69–84 (2021)

    Google Scholar 

  30. Nguyen, V.C., Nguyen, T.D., Tien, D.H.: Cutting parameter optimization in finishing milling of Ti-6Al-4V titanium alloy under MQL condition using TOPSIS and ANOVA analysis. Eng. Technol. Appl. Sci. Res. 11(1), 6775–6780 (2021)

    Article  Google Scholar 

  31. Das, P.P., Chakraborty, S.: SWARA-CoCoSo method-based parametric optimization of green dry milling processes. J. Eng. Appl. Sci. 69, 35 (2022)

    Article  Google Scholar 

  32. Kumar, G., Goel, P., Kumar, M., Tomer, A., Wahid, M.A.: Role of end-milling process parameters on surface integrity of SS-304: integrated Taguchi-grey approach. Mater. Today Proc. 51, 1141–1146 (2022)

    Article  Google Scholar 

  33. Kacker, R.N., Lagergren, E.S., Filliben, J.J.: Taguchi’s orthogonal arrays are classical designs of experiments. J. Res. Nat. Inst. Stand. Technol. 96(5), 577–591 (1991)

    Article  Google Scholar 

  34. Kuo, Y., Yang, T., Huang, G.-W.: The use of grey relational analysis in solving multiple attribute decision-making problems. Comput. Ind. Eng. 55, 80–93 (2008)

    Article  Google Scholar 

  35. Saaty, T.L.: A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15(3), 234–281 (1977)

    Article  MATH  Google Scholar 

  36. Stanujkic, D., Karabasevic, D., Zavadskas, E.K.: A framework for the selection of a packaging design based on the SWARA method. Eng. Econ. 26(2), 181–187 (2015)

    Article  Google Scholar 

  37. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Philos. Trans. A 374, 20150202 (2016)

    Article  MATH  Google Scholar 

  38. Chakraborty, S., Chakraborty, S.: A scoping review on the applications of MCDM techniques for parametric optimization of machining processes. Arch. Comput. Methods Eng. (2022). https://doi.org/10.1007/s11831-022-09731-w

    Article  Google Scholar 

  39. Lukic, D., Cep, R., Vukman, J., Antic, A., Djurdjev, M., Milosevic, M.: Multi-criteria selection of the optimal parameters for high-speed machining of aluminum alloy Al7075 thin-walled parts. Metals 10(12), 1570 (2020)

    Article  Google Scholar 

  40. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MATH  Google Scholar 

  41. Hafezalkotob, A., Hafezalkotob, A.: Extended MULTIMOORA method based on Shannon entropy weight for materials selection. J. Ind. Eng. Int. 12, 1–13 (2016)

    Article  MATH  Google Scholar 

  42. Kumar, R., Singh, S., Bilga, P.S., Jatin, S.J., Singh, S., Scutaru, M.-L., Pruncu, C.I.: Revealing the benefits of entropy weights method for multi-objective optimization in machining operations: a critical review. J. Mater. Res. Technol. 10, 1471–1492 (2021)

    Article  Google Scholar 

  43. Jebaraj, M., Pradeep Kumar, M., Yuvaraj, N., Rahman, G.M.: Experimental study of the influence of the process parameters in the milling of Al6082-T6 alloy. Mater. Manuf. Process. 34(12), 1411–1427 (2019)

    Article  Google Scholar 

  44. Nguyen, T.-T., Nguyen, T.-A., Trinh, Q.-H.: Optimization of milling parameters for energy savings and surface quality. Arab. J. Sci. Eng. 45, 9111–9125 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Kumar Ghadai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, K., Madhu, S., Ramachandran, M. et al. Experimental investigation and parametric optimization of a milling process using multi-criteria decision making methods: a comparative analysis. Int J Interact Des Manuf 17, 453–467 (2023). https://doi.org/10.1007/s12008-022-00973-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-00973-3

Keywords

Navigation