Skip to main content
Log in

CoCoSo method-based optimization of cryogenic drilling on multi-walled carbon nanotubes reinforced composites

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Continuous quest for lighter yet stronger materials has led to significant research in the field of composites. Modern-day nanocomposites have found widespread applications in diverse engineering sectors, which often require their machining. In this paper, multi-walled carbon nanotubes (MWCNTs) reinforced composites are subjected to drilling operation under cryogenic condition. To investigate the effects of different drilling parameters, like drill type, feed rate and spindle speed on delamination factors at drill entry and exit, circularity error and surface roughness, a three-level full factorial experimental study consisting of 27 experiments is carried out. To determine the optimal combination of drilling parameters, a recently developed multi-criteria decision making tool in the form of combined compromise solution (CoCoSo) method is employed. Five different objective criteria weight allocation techniques, i.e. mean weight method, standard deviation method, entropy method, criteria importance through intercriteria correlation method and method based on the removal effects of criteria are considered in this paper to avoid subjectivity in the decision making process. The optimal drilling parameters derived using the combined applications of CoCoSo and different criteria weight allocation techniques are also compared. Based on the experimental observations, it can be concluded that a TiCN coated drill with 10 mm/min feed rate and 1500 rpm spindle speed would provide the most desired response values during cryogenic drilling of MWCNTs reinforced composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Khashaba, U.A., El-Sonbaty, I.A., Selmy, A.I., Megahed, A.A.: Drilling analysis of woven glass fiber-reinforced/epoxy composites. J. Compos. Mater. 47, 191–205 (2013)

    Article  Google Scholar 

  2. Mohan, N.S., Kulkarni, S.M., Ramachandra, A.: Delamination analysis in drilling process of glass fiber reinforced plastic (GFRP) composite materials. J. Mater. Process. Technol. 186, 265–271 (2007)

    Article  Google Scholar 

  3. Bello, D., Wardle, B.L., Zhang, J., Yamamoto, N., Santeufemio, C., Hallock, M., Virji, M.A.: Characterization of exposures to nanoscale particles and fibers during solid core drilling of hybrid carbon nanotube advanced composites. Int. J. Occup. Environ. Health 16, 434–450 (2010)

    Article  Google Scholar 

  4. Rajakumar, I.P.T., Hariharan, P., Srikanth, I.: A study on monitoring the drilling of polymeric nanocomposite laminates using acoustic emission. J. Compos. Mater. 47, 1773–1784 (2013)

    Article  Google Scholar 

  5. Li, N., Li, Y., Zhou, J., He, Y., Hao, X.: Drilling delamination and thermal damage of carbon nanotube/carbon fiber reinforced epoxy composites processed by microwave curing. Int. J. Mach. Tools Manuf 97, 11–17 (2015)

    Article  Google Scholar 

  6. Kharwar, P.K., Verma, R.K.: Machining performance optimization in drilling of multiwall carbon nano tube/epoxy nanocomposites using GRA-PCA hybrid approach. Measurement 158, 107701 (2020)

    Article  Google Scholar 

  7. Yazdi, M.R.S., Razfar, M.R., Asadnia, M.: Modelling of the thrust force of the drilling operation on PA6–nanoclay nanocomposites using particle swarm optimization. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 225, 1757–1771 (2011)

    Article  Google Scholar 

  8. Ponnuvel, S., Moorthy, T.V., Lokachari, S.: Investigation on the machinability characteristics of MWCNTs filled epoxy/glass fabric hybrid nanocomposite using various drill bits. Appl. Mech. Mater. 592–594, 956–962 (2014)

    Article  Google Scholar 

  9. Kaybal, H.B., Unuvar, A., Kaynak, Y., Avcı, A.: Evaluation of boron nitride nanoparticles on delamination in drilling carbon fiber epoxy nanocomposite materials. J. Compos. Mater. 54, 215–227 (2020)

    Article  Google Scholar 

  10. Kim, D., Ramulu, M.: Cryogenically treated carbide tool performance in drilling thermoplastic composites. Trans. N. Am. Manuf. Res. Inst. SME 32, 79–85 (2004)

    Google Scholar 

  11. Xia, T., Kaynak, Y., Arvin, C., Jawahir, I.S.: Cryogenic cooling-induced process performance and surface integrity in drilling CFRP composite material. Int. J. Adv. Manuf. Technol. 82, 605–616 (2016)

    Article  Google Scholar 

  12. Khairusshima, M.N., Sharifah, I.S.S.: Study on tool wear during milling CFRP under dry and chilled air machining. Procedia Engineering 184, 506–517 (2017)

    Article  Google Scholar 

  13. Shinde, D., Öktem, H., Kalita, K., Chakraborty, S., Gao, X.-Z.: Optimization of process parameters for friction materials using multi-criteria decision making: a comparative analysis. Processes 9, 1570 (2021)

    Article  Google Scholar 

  14. Osmond, R., Mollahoseini, Z., Singh, J., Gautam, A., Seethaler, R., Golovin, K., Milani, A.S.: A group multicriteria decision making with ANOVA to select optimum parameters of drilling flax fibre composites: a case study. Composites Part C 5, 100156 (2021)

    Google Scholar 

  15. Chandrasekhar, S., Prasad, N.B.V.: Multi-response optimization of electrochemical machining parameters in the micro-drilling of AA6061-TiB2 in situ composites using the entropy-VIKOR method. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 234, 1311–1322 (2020)

    Article  Google Scholar 

  16. Ahmed, L.S., Kumar, M.P.: Multiresponse optimization of cryogenic drilling on Ti-6Al-4V alloy using topsis method. J. Mech. Sci. Technol. 30, 1835–1841 (2016)

    Article  Google Scholar 

  17. Kharwar, P.K., Verma, R.K., Singh, A.: Neural network modelling and combined compromise solution (CoCoSo) method for optimization of drilling performances in polymer nanocomposites. J. Thermoplast. Compos. Mater. (2020). https://doi.org/10.1177/0892705720939165

    Article  Google Scholar 

  18. Kumar, J., Verma, R.K.: Multiple response optimization in machining (milling) of graphene oxide-doped epoxy/CFRP composite using CoCoSo-PCA: a novel hybridization approach. J. Adv. Manuf. Syst. 20(2), 423–446 (2021)

    Article  Google Scholar 

  19. Kesarwani, S., Verma, R.K.: A novel hybridization of seagull algorithm and combined compromise solution (SOA-CoCoSo) in drilling investigation of carbon nano-onion-modified polymer composites for structural application. Surf. Rev. Lett. (2022). https://doi.org/10.1142/S0218625X22500548

    Article  Google Scholar 

  20. Panchagnula, K.K., Kuppan, P.: Improvement in the mechanical properties of neat GFRPs with multi-walled CNTs. J. Market. Res. 8, 366–376 (2019)

    Google Scholar 

  21. Yazdani, M., Zarate, P., Zavadskas, E.K., Turskis, Z.: A Combined Compromise Solution (CoCoSo) method for multi-criteria decision-making problems. Manag. Decis. 57, 2501–2519 (2019)

    Article  Google Scholar 

  22. Barua, A., Jeet, S., Bagal, D.K., Satapathy, P., Agrawal, P.K.: Evaluation of mechanical behavior of hybrid natural fiber reinforced nano SiC particles composite using hybrid Taguchi-Cocoso method. Int. J. Innov. Technol. Explor. Eng. 8(10), 3341–3345 (2019)

    Article  Google Scholar 

  23. Bagal DK, Giri A, Pattanaik AK, Jeet S, Barua A, Panda SN (2021) MCDM optimization of characteristics in resistance spot welding for dissimilar materials utilizing advanced hybrid Taguchi method-coupled CoCoSo, EDAS and WASPAS method. In: Bag S et al. (eds) Next Generation Materials and Processing Technologies, Springer, Singapore 9: https://doi.org/10.1007/978-981-16-0182-8_36

  24. Kumar, J., Majumder, S., Mondal, A.K., Verma, R.K.: Influence of rotation speed, transverse speed, and pin length during underwater friction stir welding (UW-FSW) on aluminium AA6063: a novel criterion for parametric control. Int J Lightweight Mater Manuf (2022). https://doi.org/10.1016/j.ijlmm.2022.03.001

    Article  Google Scholar 

  25. Das, P.P., Chakraborty, S.: SWARA-CoCoSo method-based parametric optimization of green dry milling processes. J Eng. Appl. Sci. 69, 35 (2022)

    Article  Google Scholar 

  26. Sapkota, G., Das, S., Sharma, A., Ghadai, R.K.: Comparison of various multi-criteria decision methods for the selection of quality hole produced by ultrasonic machining process. Mater. Today: Proc. (2022). https://doi.org/10.1016/j.matpr.2022.02.221

    Article  Google Scholar 

  27. Kumar, J., Verma, R.K.: A novel methodology of combined compromise solution and principal component analysis (CoCoSo-PCA) for machinability investigation of graphene nanocomposites. CIRP J. Manuf. Sci. Technol. 33, 143–157 (2021)

    Article  Google Scholar 

  28. Singh, A., Ghadai, R.K., Kalita, K., Chatterjee, P., Pamučar, D.: EDM process parameter optimization for efficient machining of Inconel-718. Facta Univ. Ser.: Mech. Eng. 18, 473–490 (2020)

    Google Scholar 

  29. Maheshwari N, Choudhary J, Rath A, Shinde D, Kalita K (2021) Finite element analysis and multi-criteria decision-making (MCDM)-based optimal design parameter selection of solid ventilated brake disc. J. Inst. Eng. (India): Series C 102: 349–359

  30. Reddy, V.V., Ananthram, K., Karumuri, S., Tesemma, B.G.: Turning process parameters optimization of Al7075 hybrid MMC’s using standard deviation method coupled with VIKOR. Int. J. Mech. Eng. 6(1), 232–238 (2021)

    Google Scholar 

  31. Shannon, C.E.: A mathematical theory of communication. Mobile Comput. Commun. Rev. 5, 3–55 (2001)

    Article  Google Scholar 

  32. Kumar, R., Singh, S., Bilga, P.S., Jatin, S.J., Singh, S., Scutaru, M.-L., Pruncu, C.I.: Revealing the benefits of entropy weights method for multi-objective optimization in machining operations: a critical review. J. Mater. Res. Technol. 10, 1471–1492 (2021)

    Article  Google Scholar 

  33. Diakoulaki, D., Mavrotas, G., Papayannakis, L.: Determining objective weights in multiple criteria problems: the CRITIC method. Comput. Oper. Res. 22(1), 763–770 (1995)

    Article  MATH  Google Scholar 

  34. Reddy, V.V.: Turning process parameters optimization of Al7075 hybrid MMC’s composite using TOPSIS method. Sigma J. Eng. Nat. Sci. 38(4), 2043–2055 (2020)

    Google Scholar 

  35. Bania, A., Zindani, D., Maity, S.R.: Optimization of ultrasonic machining (USM) parameters on micro hole drilling of graphene oxide/pineapple leaf filler reinforced epoxy hybrid composite using evaluation based on distance from average solution (EDAS) method. Mater. Today: Proc. 46, 9089–9091 (2021)

    Google Scholar 

  36. Ghorabaee, M.K., Amiri, M., Zavadskas, E.K., Turskis, Z., Antucheviciene, J.: Determination of objective weights using a new method based on the removal effects of criteria (MEREC). Symmetry 13, 525 (2021)

    Article  Google Scholar 

  37. Shokrani, A., Leafe, H., Newman, S.T.: Cryogenic drilling of carbon fibre reinforced plastic with tool consideration. Procedia CIRP 85, 55–60 (2019)

    Article  Google Scholar 

  38. Giasin, K., Ayvar-Soberanis, S., Hodzic, A.: Evaluation of cryogenic cooling and minimum quantity lubrication effects on machining GLARE laminates using design of experiments. J. Clean. Prod. 135, 533–548 (2016)

    Article  Google Scholar 

  39. Xu, J., Ji, M., Chen, M., El Mansori, M.: Experimental investigation on drilling machinability and hole quality of CFRP/Ti6Al4V stacks under different cooling conditions. Int. J. Adv. Manuf. Technol. 109, 1527–1539 (2020)

    Article  Google Scholar 

  40. Giasin, K., Hawxwell, J., Sinke, J., Dhakal, H., Köklü, U., Brousseau, E.: The effect of cutting tool coating on the form and dimensional errors of machined holes in GLARE® fibre metal laminates. Int. J. Adv. Manuf. Technol. 107, 2817–2832 (2020)

    Article  Google Scholar 

  41. Aamir, M., Tolouei-Rad, M., Giasin, K., Nosrati, A.: Recent advances in drilling of carbon fiber-reinforced polymers for aerospace applications: a review. Int. J. Adv. Manuf. Technol. 105, 2289–2308 (2019)

    Article  Google Scholar 

  42. Wang, H., Zhang, X., Duan, Y.: Effects of drilling area temperature on drilling of carbon fiber reinforced polymer composites due to temperature-dependent properties. Int. J. Adv. Manuf. Technol. 96, 2943–2951 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Chakraborty.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchagnula, K.K., Sharma, J.P., Kalita, K. et al. CoCoSo method-based optimization of cryogenic drilling on multi-walled carbon nanotubes reinforced composites. Int J Interact Des Manuf 17, 279–297 (2023). https://doi.org/10.1007/s12008-022-00894-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-00894-1

Keywords

Navigation