Skip to main content

Advertisement

Log in

An efficient, provably-secure DAG based consensus mechanism for industrial internet of things

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Modern industrial systems are mostly integrated with the IoT ecosystem for rapid communication with the Internet of Things (IoT). In industrial systems, the interaction among different devices requires a secure, efficient, and robust IoT infrastructure. Emerging blockchain technology provides highly secure network nodes to support industrial systems and IoT. This work discusses the current state of blockchain integration with industrial IoT systems. In order to improve the security of Industrial IoT, a DAG-based consensus model is developed to addresses the issues in the generic blockchain network. We compared the merits of the DAG-based blockchain model with the Proof of Work (PoW) and Proof of Stake (PoS) consensus mechanism. Moreover, a main integration of DAG-based blockchain technology with industrial IoT and key challenges are presented with evaluation results. The performance evaluations are carried out with the help of block weight, ledge scalability and IIoT reliability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Figueroa-Lorenzo, S., Añorga, J., Arrizabalaga, S.: Methodological performance analysis applied to a novel IIoT access control system based on permissioned blockchain. Inf. Process. Manage. 58(4), 102558 (2021)

    Article  Google Scholar 

  2. Azad, M.A., Bag, S., Hao, F., Shalaginov, A.: Decentralized self-enforcing trust management system for social Internet of Things. IEEE Internet Things J. 7(4), 2690–2703 (2020)

    Article  Google Scholar 

  3. Nakamoto, S., & Bitcoin, A.: A peer-to-peer electronic cash system. Bitcoin.– 4. (2008).

  4. Swan, M.: Blockchain: Blueprint for a new economy. " O'Reilly Media, Inc.". (2015)

  5. Buterin, V.: A next-generation smart contract and decentralized application platform. white paper, 3(37). (2014)

  6. Wilkinson, S., Boshevski, T., Brandoff, J., & Buterin, V.: Storj a peer-to-peer cloud storage network. (2014)

  7. Wilkinson, S., & Metadisk, L. J.: Blockchain-based decentralized file storage. (2014)

  8. Crosby, M., Pattanayak, P., Verma, S., Kalyanaraman, V.: Blockchain technology: beyond bitcoin. Applied Innovation 2(6–10), 71 (2016)

    Google Scholar 

  9. Kalodner, H. A., Carlsten, M., Ellenbogen, P., Bonneau, J., & Narayanan, A.: An empirical study of namecoin and lessons for decentralized namespace design. In WEIS. (2015)

  10. Fromknecht, C., Velicanu, D., Yakoubov, S.: A Decentralized Public Key Infrastructure with Identity Retention. IACR Cryptol. ePrint Arch. 2014, 803 (2014)

    Google Scholar 

  11. Mattke, J., Maier, C., Reis, L., & Weitzel, T.: Bitcoin investment: a mixed methods study of investment motivations. European Journal of Information Systems, pp. 1–25. (2020)

  12. Hill, B., Chopra, S., Valencourt, P., & Prusty, N.: Blockchain Developer's Guide: Develop smart applications with Blockchain technologies-Ethereum, JavaScript, Hyperledger Fabric, and Corda. Packt Publishing Ltd. (2018)

  13. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., ... & Yellick, J.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In Proceedings of the thirteenth EuroSys conference (pp. 1–15). (2018)

  14. Cachin, C., & Vukolić, M.: Blockchain consensus protocols in the wild. arXiv preprint arXiv:1707.01873. (2017)

  15. Sharma, P.K., Singh, S., Jeong, Y.S., Park, J.H.: Distblocknet: A distributed blockchains-based secure sdn architecture for iot networks. IEEE Commun. Mag. 55(9), 78–85 (2017)

    Article  Google Scholar 

  16. Daza, V., Di Pietro, R., Klimek, I., & Signorini, M.: CONNECT: CONtextual NamE disCovery for blockchain-based services in the IoT. In 2017 IEEE International conference on communications (ICC) (pp. 1–6). IEEE. (2017)

  17. Novo, O.: Blockchain meets IoT: An architecture for scalable access management in IoT. IEEE Internet Things J. 5(2), 1184–1195 (2018)

    Article  Google Scholar 

  18. Sharma, P.K., Chen, M.Y., Park, J.H.: A software defined fog node based distributed blockchain cloud architecture for IoT. Ieee Access 6, 115–124 (2017)

    Article  Google Scholar 

  19. Yeow, K., Gani, A., Ahmad, R.W., Rodrigues, J.J., Ko, K.: Decentralized consensus for edge-centric internet of things: a review, taxonomy, and research issues. IEEE Access 6, 1513–1524 (2017)

    Article  Google Scholar 

  20. Li, C., & Zhang, L. J.: A blockchain based new secure multi-layer network model for internet of things. In: 2017 IEEE International congress on Internet of Things (ICIOT) (pp. 33–41). IEEE. (2017)

  21. Conoscenti, M., Vetro, A., & De Martin, J. C.: Blockchain for the internet of things: a systematic literature review. In: 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA) (pp. 1–6). IEEE. (2016)

  22. Varshney, G., & Gupta, H.: A security framework for IOT devices against wireless threats. In: 2017 2nd International Conference on Telecommunication and Networks (TEL-NET) (pp. 1–6). IEEE. (2017)

  23. Lee, C. H., & Kim, K. H.: Implementation of IoT system using block chain with authentication and data protection. In: 2018 International Conference on Information Networking (ICOIN) (pp. 936–940). IEEE. (2018)

  24. Jeon, J. H., Kim, K. H., & Kim, J. H.: Block chain based data security enhanced IoT server platform. In: 2018 International Conference on Information Networking (ICOIN) (pp. 941–944). IEEE. (2018)

  25. Xie, C., Sun, Y., & Luo, H.: Secured data storage scheme based on block chain for agricultural products tracking. In 2017 3rd International Conference on Big Data Computing and Communications (BIGCOM) (pp. 45–50). IEEE. (2017)

  26. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the internet of things. Ieee Access 4, 2292–2303 (2016)

    Article  Google Scholar 

  27. Liang, X., Zhao, J., Shetty, S., Liu, J., & Li, D.: Integrating blockchain for data sharing and collaboration in mobile healthcare applications. In 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 1–5). IEEE. (2017)

  28. Dorri, A., Steger, M., Kanhere, S.S., Jurdak, R.: Blockchain: A distributed solution to automotive security and privacy. IEEE Commun. Mag. 55(12), 119–125 (2017)

    Article  Google Scholar 

  29. Kang, J., Yu, R., Huang, X., Maharjan, S., Zhang, Y., Hossain, E.: Enabling localized peer-to-peer electricity trading among plug-in hybrid electric vehicles using consortium blockchains. IEEE Trans. Industr. Inf. 13(6), 3154–3164 (2017)

    Article  Google Scholar 

  30. Li, Z., Kang, J., Yu, R., Ye, D., Deng, Q., Zhang, Y.: Consortium blockchain for secure energy trading in industrial internet of things. IEEE Trans. Industr. Inf. 14(8), 3690–3700 (2017)

    Google Scholar 

  31. King, S., & Nadal, S.: Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. self-published paper, August, 19, 1. (2012)

  32. Schoder, D., Fischbach, K., & Schmitt, C.: Core concepts in peer-to-peer networking. Peer-to-peer computing: The Evolution of a Disruptive Technology, pp. 1–27. (2005)

  33. Popov, S.: The tangle. White paper 1, 3 (2018)

    Google Scholar 

  34. Baird, L.: The swirlds hashgraph consensus algorithm: Fair, fast, byzantine fault tolerance. Swirlds Tech Reports SWIRLDS-TR-2016–01, Tech. Rep. (2016)

  35. Popov, S., Saa, O., Finardi, P.: Equilibria in the Tangle. Comput. Ind. Eng. 136, 160–172 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Subramaniyaswamy or Ketan Kotecha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasikumar, A., Senthilkumar, N., Subramaniyaswamy, V. et al. An efficient, provably-secure DAG based consensus mechanism for industrial internet of things. Int J Interact Des Manuf 17, 2197–2207 (2023). https://doi.org/10.1007/s12008-022-00890-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-00890-5

Keywords

Navigation