Skip to main content
Log in

Intelligent computation modeling and analysis of a gripper for advanced manufacturing application

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

This paper is aimed to provide a new design modeling of the gripper via using the intelligent computing model. The gripper is designed to get benefit of a symmetric structure and compliant mechanism that can manipulate the objects with a stable force. The numerically experimental samples for the gripper are built and the finite element simulations are implemented. The displacement of left hand is collected. An intelligent computing model is formulated via a hybridization of the teaching learning optimization and feed forward neural network. The teaching learning optimization algorithm is embedded into neural network to enhance the training process. The results determined that the mean square error values of the entire model, the training, the testing, and validating are about 6.04e-07, 6.11e-07, 6.50e-08, and 1.10e-06, respectively. Furthermore, the coefficient of determination value of the entire model, the training, the testing, and validating are 0.9975, 0.9970, 0.9998, and 0.9677, accordingly. In addition, the proposed intelligent predictor is outperformed other regression methods such as linear regression, full 2nd order polynomial regression, and traditional artificial neural network. Moreover, the errors among the estimated from the proposed intelligent method and the prediction errors are less than 3%. It revealed that the proposed intelligent methodology is a well-suitable predictor for modeling the behaviors of gripper. The gripper is capable of providing a displacement amplification ratio of 2.85 and a max grasping force of 145.96 N. The gripper is potential for many practical applications such as robotics and manipulators in agricultural and electrics engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nguyen, P., Ho, V.A.: Grasping interface with wet adhesion and patterned morphology: case of thin shell. IEEE Robot. Autom. Lett. 4, 792–799 (2019). https://doi.org/10.1109/LRA.2019.2893401

    Article  Google Scholar 

  2. Nguyen Van, P., Bui, T.H., Ho, V.A.: (2021) Towards safely grasping group objects by hybrid robot hand. 2021 4th Int Conf Robot Control Autom Eng RCAE 2021 1:389–393. https://doi.org/10.1109/RCAE53607.2021.9638841

  3. Dong, H., Asadi, E., Qiu, C., et al.: Geometric design optimization of an under-actuated tendon-driven robotic gripper. Robot. Comput. Integr. Manuf. 50, 80–89 (2018). https://doi.org/10.1016/j.rcim.2017.09.012

    Article  Google Scholar 

  4. Blanes, C., Ortiz, C., Mellado, M., Beltrán, P.: Assessment of eggplant firmness with accelerometers on a pneumatic robot gripper. Comput Electron. Agric. 113, 44–50 (2015). https://doi.org/10.1016/j.compag.2015.01.013

    Article  Google Scholar 

  5. Xiong, Y., Peng, C., Grimstad, L., et al.: Development and field evaluation of a strawberry harvesting robot with a cable-driven gripper. Comput. Electron. Agric 157, 392–402 (2019). https://doi.org/10.1016/j.compag.2019.01.009

    Article  Google Scholar 

  6. Nishida, T., Okatani, Y., Tadakuma, K.: Development of universal robot gripper using MR α Fluid. Int. J. Humanoid Robot 13, 1–13 (2016). https://doi.org/10.1142/S0219843616500171

    Article  Google Scholar 

  7. Sandhu, K., Singh, G., Singh, S., et al.: Surface characteristics of machined polystyrene with 3D printed thermoplastic tool. Materials (Basel) 13, 1–16 (2020). https://doi.org/10.3390/ma13122729

    Article  Google Scholar 

  8. Miao, Y., Zheng, J.: Optimization design of compliant constant-force mechanism for apple picking actuator. Comput. Electron. Agric. 170, 105232 (2020). https://doi.org/10.1016/j.compag.2020.105232

    Article  Google Scholar 

  9. Dao, T.: Robust parameter design for a compliant microgripper based on hybrid Taguchi-differential evolution algorithm. Microsyst. Technol. (2017). https://doi.org/10.1007/s00542-017-3534-2

    Article  Google Scholar 

  10. Le Chau, N., Ho, N.L., Tran, N.T., Dao, T.-P.: Analytical model and computing optimization of a compliant gripper for the assembly system of mini direct-current motor. Int. J. Ambient Comput. Intell. (2021). https://doi.org/10.4018/ijaci.2021010101

    Article  Google Scholar 

  11. Le Chau, N., Ho, N.L., Vinh Chung, T.T., et al.: Computing optimization of a parallel structure-based monolithic gripper for manipulation using weight method-based grey relational analysis. Int. J. Ambient Comput. Intell. 12, 39–74 (2021). https://doi.org/10.4018/IJACI.2021070103

    Article  Google Scholar 

  12. Deshwal, S., Kumar, A., Chhabra, D.: Exercising hybrid statistical tools GA-RSM, GA-ANN and GA-ANFIS to optimize FDM process parameters for tensile strength improvement. CIRP J. Manuf. Sci. Technol. 31, 189–199 (2020). https://doi.org/10.1016/j.cirpj.2020.05.009

    Article  Google Scholar 

  13. Pant, P., Chatterjee, D.: Prediction of clad characteristics using ANN and combined PSO-ANN algorithms in laser metal deposition process. Surf. Interfaces 21, 100699 (2020). https://doi.org/10.1016/j.surfin.2020.100699

    Article  Google Scholar 

  14. Prakash, C., Singh, S., Singh, M., et al.: Multi-objective parametric appraisal of pulsed current gas tungsten arc welding process by using hybrid optimization algorithms. Int. J. Adv. Manuf. Technol. 101, 1107–1123 (2019). https://doi.org/10.1007/s00170-018-3017-3

    Article  Google Scholar 

  15. Rao, R.V., Singh, H.: Rao algorithms for multi - objective optimization of selected thermodynamic cycles. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-01008-9

    Article  Google Scholar 

  16. Ling, M., Howell, L.L., Cao, J., Chen, G.: Kinetostatic and dynamic modeling of flexure-based compliant mechanisms: a survey. Appl. Mech. Rev. (2020). https://doi.org/10.1115/1.4045679

    Article  Google Scholar 

  17. Hassan, A., Abomoharam, M.: Modeling and design optimization of a robot gripper mechanism. Robot Comput. Integr. Manuf. 46, 94–103 (2017). https://doi.org/10.1016/j.rcim.2016.12.012

    Article  Google Scholar 

  18. Haibin, Y., Cheng, K., Junfeng, L., Guilin, Y.: Modeling of grasping force for a soft robotic gripper with variable stiffness. Mech. Mach. Theory 128, 254–274 (2018). https://doi.org/10.1016/j.mechmachtheory.2018.05.005

    Article  Google Scholar 

  19. Jain, R.K., Majumder, S., Ghosh, B., Saha, S.: Design and manufacturing of mobile micro manipulation system with a compliant piezoelectric actuator based micro gripper. J. Manuf. Syst. 35, 76–91 (2015). https://doi.org/10.1016/j.jmsy.2014.12.001

    Article  Google Scholar 

  20. Zhang, X., Xu, Q.: Design and testing of a novel 2-DOF compound constant-force parallel gripper. Precis Eng. (2019). https://doi.org/10.1016/j.precisioneng.2018.09.004

    Article  Google Scholar 

  21. Wandra, R., Prakash, C., Singh, S.: Experimental investigation and optimization of surface roughness of β-Phase titanium alloy by ball burnishing assisted electrical discharge cladding for implant applications. Mater. Today Proc 48, 975–980 (2021). https://doi.org/10.1016/j.matpr.2021.06.070

    Article  Google Scholar 

  22. Sharma, A., Kumar, V., Babbar, A., et al.: Experimental investigation and optimization of electric discharge machining process parameters using grey-fuzzy-based hybrid techniques. Materials (Basel) (2021). https://doi.org/10.3390/ma14195820

    Article  Google Scholar 

  23. Babbar, A., Prakash, C., Singh, S., et al.: Application of hybrid nature-inspired algorithm: single and bi-objective constrained optimization of magnetic abrasive finishing process parameters. J. Mater. Res. Technol. 9, 7961–7974 (2020). https://doi.org/10.1016/j.jmrt.2020.05.003

    Article  Google Scholar 

  24. Pramanik, A., Islam, M.N., Basak, A.K., et al.: Optimizing dimensional accuracy of titanium alloy features produced by wire electrical discharge machining. Mater. Manuf. Process 34, 1083–1090 (2019). https://doi.org/10.1080/10426914.2019.1628259

    Article  Google Scholar 

  25. Ling, M., Song, D., Zhang, X., et al.: Analysis and design of spatial compliant mechanisms using a 3-D dynamic stiffness model. Mech. Mach. Theory 168, 104581 (2022). https://doi.org/10.1016/j.mechmachtheory.2021.104581

    Article  Google Scholar 

  26. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: a tutorial. Reliab Eng Syst Saf 91, 992–1007 (2006). https://doi.org/10.1016/j.ress.2005.11.018

    Article  Google Scholar 

  27. Antil, P., Kumar Antil, S., Prakash, C., et al.: Multi-objective optimization of drilling parameters for orthopaedic implants. Meas Control (United Kingdom) 53, 1902–1910 (2020). https://doi.org/10.1177/0020294020947126

    Article  Google Scholar 

  28. Nilanjan, D., Ashour, A.S., Bhattacharyya, S.: Applied nature-inspired computing: algorithms and case studies. Springer Singapore (2020). https://link.springer.com/book/10.1007/978-981-13-9263-4?noAccess=true

  29. Jagatheesan, K., Anand, B., Samanta, S., et al.: Application of flower pollination algorithm in load frequency control of multi-area interconnected power system with nonlinearity. Neural Comput. Appl. 28, 475–488 (2017). https://doi.org/10.1007/s00521-016-2361-1

    Article  Google Scholar 

  30. Binh, H.T.T., Hanh, N.T., Van Quan, L., Dey, N.: Improved cuckoo search and chaotic flower pollination optimization algorithm for maximizing area coverage in wireless sensor networks. Neural Comput. Appl. 30, 2305–2317 (2018). https://doi.org/10.1007/s00521-016-2823-5

    Article  Google Scholar 

  31. Cao, J., Cui, H., Shi, H., Jiao, L.: Big data: a parallel particle swarm optimization-back-propagation neural network algorithm based on MapReduce. PLoS ONE 11, 1–17 (2016). https://doi.org/10.1371/journal.pone.0157551

    Article  Google Scholar 

  32. Chatterjee, S., Sarkar, S., Hore, S., et al.: Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings. Neural Comput. Appl. 28, 2005–2016 (2017). https://doi.org/10.1007/s00521-016-2190-2

    Article  Google Scholar 

  33. Seifi, A., Soroush, F.: Pan evaporation estimation and derivation of explicit optimized equations by novel hybrid meta-heuristic ANN based methods in different climates of Iran. Comput. Electron. Agric. (2020). https://doi.org/10.1016/j.compag.2020.105418

    Article  Google Scholar 

  34. Hore, S., Chatterjee, S., Santhi, V., et al.: Optimized Neural Networks. 139–151 (2017) https://doi.org/10.1007/978-3-319-38771-0

  35. Cappelli, L., Balokas, G., Montemurro, M., et al.: Multi-scale identification of the elastic properties variability for composite materials through a hybrid optimisation strategy. Compos. Part B Eng. (2019). https://doi.org/10.1016/j.compositesb.2019.107193

    Article  Google Scholar 

  36. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf. Sci. (Ny) 183, 1–15 (2012). https://doi.org/10.1016/j.ins.2011.08.006

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by Industrial University of Ho Chi Minh City (IUH) under grant number 01/HD-DHCN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh-Phong Dao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, D.N., Dang, M.P., Nguyen, T.T. et al. Intelligent computation modeling and analysis of a gripper for advanced manufacturing application. Int J Interact Des Manuf 17, 2185–2195 (2023). https://doi.org/10.1007/s12008-022-00885-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-00885-2

Keywords

Navigation