Skip to main content
Log in

A two-step approach for reliability-based design optimization in power transmission line towers

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Reliability-based design can be used to simultaneously take into account economic aspects as well as safety considerations for various failure probabilities of structures. Such problems have two categories of deterministic and probabilistic constraints. Evaluating the probabilistic constraints and calculating the reliability index, usually require a large number of evaluations of the limit state function. This increases the time and volume of computation; while there is no need to calculate the reliability index for all probable optimal solutions and this index should only be calculated for probable solutions in which deterministic constraints are met. Accordingly, in this study, a two-step approach for optimal design of reliability-based structures is proposed. In this approach, the probabilistic constraint is checked when the deterministic constraint is met; otherwise, the probabilistic constraint is not calculated and the reliability index of zero is considered as a probable solution penalty. In order to investigate the efficiency of this approach, four power transmission lines towers were studied with enhanced colliding bodies optimization (ECBO), water evaporation optimization (WEO), and enhanced vibrating particles system (EVPS). Deterministic and probabilistic constraints defined based on the members’ axial stress and nodal displacement, respectively. Monte-Carlo simulation method was used to evaluate the probabilistic constraints. The results show an appropriate safety margin than the allowable values for the probabilistic constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Jimoh, A.A., Rahmon, R., Ajide, S.O.: Reliability-based investigation on compressive strength characteristics of structural-Sized Iroko (Meliceae Excelsa) and Mahogany (Khaya Ivorensis) timber column found in Nigeria. Comput. Eng. Phys. Model. 1(1), 23–37 (2018). https://doi.org/10.22115/cepm.2018.105453.1002

    Article  Google Scholar 

  2. Zhao, Y.G., Ono, T.: Moment methods for structural reliability. Struct. Saf. 23(1), 47–75 (2001)

    Article  Google Scholar 

  3. Lee, S.H., Kwak, B.M.: Response surface augmented moment method for efficient reliability analysis. Struct. Saf. 28(3), 261–272 (2006)

    Article  Google Scholar 

  4. Keshtegar, B., Chakraborty, S.: A hybrid self-adaptive conjugate first order reliability method for robust structural reliability analysis. Appl. Math. Model. 53, 319–332 (2018). https://doi.org/10.1016/j.apm.2017.09.017

    Article  MathSciNet  MATH  Google Scholar 

  5. Meng, Z., Zhou, H., Hu, H., Keshtegar, B.: Enhanced sequential approximate programming using second order reliability method for accurate and efficient structural reliability-based design optimization. Appl. Math. Model. 62, 562–579 (2018). https://doi.org/10.1016/j.apm.2018.06.018

    Article  MathSciNet  MATH  Google Scholar 

  6. Deng, L., Ghosn, M., Shao, S.: Development of a shredding genetic algorithm for structural reliability. Struct. Saf. 27(2), 113–131 (2005)

    Article  Google Scholar 

  7. Elegbede, C.: Structural reliability assessment based on particles swarm optimization. Struct. Saf. 27(2), 171–186 (2005)

    Article  Google Scholar 

  8. Zou, D., Gao, L., Wu, J., Li, S., Li, Y.: A novel global harmony search algorithm for reliability problems. Comput. Ind. Eng. 58(2), 307–316 (2010)

    Article  Google Scholar 

  9. Zou, D., Gao, L., Li, S., Wu, J.: An effective global harmony search algorithm for reliability problems. Expert Syst. Appl. 38(4), 4642–4648 (2011)

    Article  Google Scholar 

  10. Valian, E., Tavakoli, S., Mohanna, S., Haghi, A.: Improved cuckoo search for reliability optimization problems. Comput. Ind. Eng. 64(1), 459–468 (2013)

    Article  Google Scholar 

  11. Hoseini Vaez, S.R., Mehanpour, H., Fathali, M.A.: Reliability assessment of truss structures with natural frequency constraints using metaheuristic algorithms. J. Build. Eng. 28, 101065 (2020). https://doi.org/10.1016/j.jobe.2019.101065

    Article  Google Scholar 

  12. Hosseini, P., Hoseini Vaez, H.R., Fathali, M.A., Mehanpour, H.: Reliability assessment of transmission line towers using metaheuristic algorithms. Int. J. Optim. Civ. Eng. 10(3), 531–551 (2020)

    Google Scholar 

  13. Kaveh, A., Hoseini Vaez, S.R., Hosseini, P., Fathali, M.A.: Heuristic operator for reliability assessment of frame structures. Periodica Polytech. Civ. Eng. 65(3), 702–716 (2021). https://doi.org/10.3311/PPci.17580

    Article  Google Scholar 

  14. Olsson, A., Sandberg, G., Dahlblom, O.: On Latin hypercube sampling for structural reliability analysis. Struct. Saf. 25(1), 47–68 (2003)

    Article  Google Scholar 

  15. Ibrahim, Y.: Observations on applications of importance sampling in structural reliability analysis. Struct. Saf. 9(4), 269–281 (1991)

    Article  Google Scholar 

  16. Miao, F., Ghosn, M.: Modified subset simulation method for reliability analysis of structural systems. Struct. Saf. 33(4–5), 251–260 (2011)

    Article  Google Scholar 

  17. Au, S., Ching, J., Beck, J.: Application of subset simulation methods to reliability benchmark problems. Struct. Saf. 29(3), 183–193 (2007)

    Article  Google Scholar 

  18. Pradlwarter, H., Schuëller, G.: Local domain monte carlo simulation. Struct. Saf. 32(5), 275–280 (2010)

    Article  Google Scholar 

  19. Pradlwarter, H., Schueller, G., Koutsourelakis, P.S., Charmpis, D.C.: Application of line sampling simulation method to reliability benchmark problems. Struct. Saf. 29(3), 208–221 (2007)

    Article  Google Scholar 

  20. Kang, S.-C., Koh, H.-M., Choo, J.F.: An efficient response surface method using moving least squares approximation for structural reliability analysis. Probab. Eng. Mech. 25(4), 365–371 (2010). https://doi.org/10.1016/j.probengmech.2010.04.002

    Article  Google Scholar 

  21. Bucher, C.: Asymptotic sampling for high-dimensional reliability analysis. Probab. Eng. Mech. 24(4), 504–510 (2009)

    Article  Google Scholar 

  22. Rashki, M., Miri, M., Moghaddam, M.A.: A new efficient simulation method to approximate the probability of failure and most probable point. Struct. Saf. 39, 22–29 (2012)

    Article  Google Scholar 

  23. Kaveh, A., Dadras, A.: An efficient method for reliability estimation using the combination of asymptotic sampling and weighted simulation. Scientia Iranica 26(4), 2108–2122 (2019). https://doi.org/10.24200/sci.2019.21367

    Article  Google Scholar 

  24. Meng, Z., Pang, Y., Zhou, H.: An augmented weighted simulation method for high-dimensional reliability analysis. Struct. Saf. 93, 102117 (2021). https://doi.org/10.1016/j.strusafe.2021.102117

    Article  Google Scholar 

  25. Nikolaidis, E., Burdisso, R.: Reliability based optimization: a safety index approach. Comput. Struct. 28(6), 781–788 (1988)

    Article  MATH  Google Scholar 

  26. Dubourg, V., Sudret, B., Bourinet, J.-M.: Reliability-based design optimization using kriging surrogates and subset simulation. Struct. Multidiscipl. Optim. 44(5), 673–690 (2011)

    Article  Google Scholar 

  27. Chen, Z., Qiu, H., Gao, L., Su, L., Li, P.: An adaptive decoupling approach for reliability-based design optimization. Comput. Struct. 117, 58–66 (2013)

    Article  Google Scholar 

  28. Du, X., Chen, W.: Sequential optimization and reliability assessment method for efficient probabilistic design. J. Mech. Des. 126(2), 225–233 (2004)

    Article  Google Scholar 

  29. Royset, J.O., Der Kiureghian, A., Polak, E.: Reliability-based optimal structural design by the decoupling approach. Reliab. Eng. Syst. Saf. 73(3), 213–221 (2001)

    Article  Google Scholar 

  30. Shan, S., Wang, G.G.: Reliable design space and complete single-loop reliability-based design optimization. Reliab. Eng. Syst. Saf. 93(8), 1218–1230 (2008)

    Article  Google Scholar 

  31. Chen X, Hasselman T, Neill D (1997) Reliability based structural design optimization for practical applications. In: 38th Structures, structural dynamics, and materials conference, Kissimmee, FL, U.S.A., 1997. p 1403

  32. Schuëller, G.I., Jensen, H.A.: Computational methods in optimization considering uncertainties–an overview. Comput. Methods Appl. Mech. Eng. 198(1), 2–13 (2008)

    Article  MATH  Google Scholar 

  33. Aoues, Y., Chateauneuf, A.: Benchmark study of numerical methods for reliability-based design optimization. Struct. Multidiscipl. Optim. 41(2), 277–294 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yang, I.-T., Hsieh, Y.-H.: Reliability-based design optimization with cooperation between support vector machine and particle swarm optimization. Eng. Comput. 29(2), 151–163 (2013)

    Article  Google Scholar 

  35. Hamzehkolaei, N.S., Miri, M., Rashki, M.: An enhanced simulation-based design method coupled with meta-heuristic search algorithm for accurate reliability-based design optimization. Eng. Comput. 32(3), 477–495 (2016)

    Article  Google Scholar 

  36. Shayanfar, M., Abbasnia, R., Khodam, A.: Development of a GA-based method for reliability-based optimization of structures with discrete and continuous design variables using OpenSees and Tcl. Finite Elem. Anal. Des. 90, 61–73 (2014)

    Article  Google Scholar 

  37. Mathakari, S., Gardoni, P., Agarwal, P., Raich, A., Haukaas, T.: Reliability-based optimal design of electrical transmission towers using multi-objective genetic algorithms. Comput. Aid. Civ. Infrastruct. Eng. 22(4), 282–292 (2007). https://doi.org/10.1111/j.1467-8667.2007.00485.x

    Article  Google Scholar 

  38. Nowak, A.S., Collins, K.R.: Reliability of structures, 2nd edn. CRC Press, Boca Raton, FL, USA (2012)

    Book  Google Scholar 

  39. Kaveh, A., Ilchi Ghazaan, M.: Enhanced colliding bodies optimization for design problems with continuous and discrete variables. Adv. Eng. Softw. 77, 66–75 (2014). https://doi.org/10.1016/j.advengsoft.2014.08.003

    Article  Google Scholar 

  40. Kaveh, A., Mahdavi, V.R.: Colliding bodies optimization: a novel meta-heuristic method. Comput. Struct. 139, 18–27 (2014). https://doi.org/10.1016/j.compstruc.2014.04.005

    Article  Google Scholar 

  41. Kaveh, A., Bakhshpoori, T.: Water evaporation optimization: a novel physically inspired optimization algorithm. Comput. Struct. 167, 69–85 (2016). https://doi.org/10.1016/j.compstruc.2016.01.008

    Article  Google Scholar 

  42. Wang, S., Tu, Y., Wan, R., Fang, H.: Evaporation of tiny water aggregation on solid surfaces with different wetting properties. J. Phys. Chem. B 116(47), 13863–13867 (2012). https://doi.org/10.1021/jp302142s

    Article  Google Scholar 

  43. Kaveh, A., Hoseini Vaez, S.R., Hosseini, P.: Enhanced vibrating particles system algorithm for damage identification of truss structures. Scientia Iranica 26(1), 246–256 (2019). https://doi.org/10.24200/sci.2017.4265

    Article  Google Scholar 

  44. Kaveh, A., Ilchi Ghazaan, M.: A new meta-heuristic algorithm: vibrating particles system. Scientia Iranica 24(2), 551–566 (2017). https://doi.org/10.24200/sci.2017.2417

    Article  Google Scholar 

  45. Tejani, G.G., Pholdee, N., Bureerat, S., Prayogo, D.: Multiobjective adaptive symbiotic organisms search for truss optimization problems. Knowl. Based Syst. 161, 398–414 (2018). https://doi.org/10.1016/j.knosys.2018.08.005

    Article  Google Scholar 

  46. Degertekin, S.O., Lamberti, L., Ugur, I.B.: Discrete sizing/layout/topology optimization of truss structures with an advanced Jaya algorithm. Appl. Soft Comput. 79, 363–390 (2019). https://doi.org/10.1016/j.asoc.2019.03.058

    Article  Google Scholar 

  47. Kaveh, A., Dadras, A., Montazeran, A.H.: Chaotic enhanced colliding bodies algorithms for size optimization of truss structures. Acta Mech. 229(7), 2883–2907 (2018). https://doi.org/10.1007/s00707-018-2149-8

    Article  MathSciNet  MATH  Google Scholar 

  48. Tejani, G.G., Pholdee, N., Bureerat, S., Prayogo, D., Gandomi, A.H.: Structural optimization using multi-objective modified adaptive symbiotic organisms search. Expert Syst. Appl. 125, 425–441 (2019). https://doi.org/10.1016/j.eswa.2019.01.068

    Article  Google Scholar 

  49. Li, L.J., Huang, Z.B., Liu, F.: A heuristic particle swarm optimization method for truss structures with discrete variables. Comput. Struct. 87(7), 435–443 (2009). https://doi.org/10.1016/j.compstruc.2009.01.004

    Article  Google Scholar 

  50. Erbatur, F., Hasançebi, O., Tütüncü, İ, Kılıç, H.: Optimal design of planar and space structures with genetic algorithms. Comput. Struct. 75(2), 209–224 (2000). https://doi.org/10.1016/S0045-7949(99)00084-X

    Article  Google Scholar 

  51. Mortazavi, A., Toğan, V.: Simultaneous size, shape, and topology optimization of truss structures using integrated particle swarm optimizer. Struct. Multidiscipl. Optim. 54(4), 715–736 (2016). https://doi.org/10.1007/s00158-016-1449-7

    Article  MathSciNet  Google Scholar 

  52. Degertekin, S.O., Lamberti, L., Ugur, I.B.: Sizing, layout and topology design optimization of truss structures using the Jaya algorithm. Appl. Soft Comput. 70, 903–928 (2018). https://doi.org/10.1016/j.asoc.2017.10.001

    Article  Google Scholar 

  53. Panagant, N., Bureerat, S.: Truss topology, shape and sizing optimization by fully stressed design based on hybrid grey wolf optimization and adaptive differential evolution. Eng. Optim. 50(10), 1645–1661 (2018). https://doi.org/10.1080/0305215X.2017.1417400

    Article  MathSciNet  Google Scholar 

  54. Ahrari, A., Atai, A.A., Deb, K.: Simultaneous topology, shape and size optimization of truss structures by fully stressed design based on evolution strategy. Eng. Optim. 47(8), 1063–1084 (2015). https://doi.org/10.1080/0305215X.2014.947972

    Article  MathSciNet  Google Scholar 

  55. Husseinzadeh Kashan, A., Jalili, S., Karimiyan, S.: Premier league championship algorithm: a multi-population-based algorithm and its application on structural design optimization. In: Kulkarni, A.J., Singh, P.K., Satapathy, S.C., Husseinzadeh Kashan, A., Tai, K. (eds.) Socio-cultural inspired metaheuristics, pp. 215–240. Springer, Singapore (2019)

    Chapter  Google Scholar 

  56. Kaveh, A., Mahdavi, V.R.: Colliding bodies optimization method for optimum discrete design of truss structures. Comput. Struct. 139, 43–53 (2014). https://doi.org/10.1016/j.compstruc.2014.04.006

    Article  Google Scholar 

  57. Lee, K.S., Geem, Z.W., Lee, S.-h, Bae, K.-w: The harmony search heuristic algorithm for discrete structural optimization. Eng. Optim. 37(7), 663–684 (2005). https://doi.org/10.1080/03052150500211895

    Article  MathSciNet  Google Scholar 

  58. Jalili, S., Husseinzadeh Kashan, A.: Optimum discrete design of steel tower structures using optics inspired optimization method. Struct. Des. Tall Spec. Build. 27(9), e1466 (2018). https://doi.org/10.1002/tal.1466

    Article  Google Scholar 

  59. Do, D.T.T., Lee, J.: A modified symbiotic organisms search (mSOS) algorithm for optimization of pin-jointed structures. Appl. Soft Comput. 61, 683–699 (2017). https://doi.org/10.1016/j.asoc.2017.08.002

    Article  Google Scholar 

  60. Ho-Huu, V., Hartjes, S., Visser, H.G., Curran, R.: An improved MOEA/D algorithm for bi-objective optimization problems with complex Pareto fronts and its application to structural optimization. Expert Syst. Appl. 92, 430–446 (2018). https://doi.org/10.1016/j.eswa.2017.09.051

    Article  Google Scholar 

  61. Ho-Huu, V., Nguyen-Thoi, T., Vo-Duy, T., Nguyen-Trang, T.: An adaptive elitist differential evolution for optimization of truss structures with discrete design variables. Comput. Struct. 165, 59–75 (2016). https://doi.org/10.1016/j.compstruc.2015.11.014

    Article  Google Scholar 

  62. Barbosa, H.J.C., Lemonge, A.C.C., Borges, C.C.H.: A genetic algorithm encoding for cardinality constraints and automatic variable linking in structural optimization. Eng. Struct. 30(12), 3708–3723 (2008). https://doi.org/10.1016/j.engstruct.2008.06.014

    Article  Google Scholar 

  63. Groenwold, A.A., Stander, N.: Optimal discrete sizing of truss structures subject to buckling constraints. Struct. Optim. 14(2), 71–80 (1997). https://doi.org/10.1007/BF01812508

    Article  Google Scholar 

  64. Kaveh, A., Shojaee, S.: Optimal design of skeletal structures using ant colony optimization. Int. J. Numer. Meth. Eng. 70(5), 563–581 (2007). https://doi.org/10.1002/nme.1898

    Article  MATH  Google Scholar 

  65. Saka, M.P.: Optimum design of pin-jointed steel structures with practical application. J. Struct. Eng. 116(10), 2599–2620 (1990). https://doi.org/10.1061/(ASCE)0733-9445(1990)116:10(2599)

    Article  Google Scholar 

  66. Toğan, V., Daloğlu, A.T.: Optimization of 3d trusses with adaptive approach in genetic algorithms. Eng. Struct. 28(7), 1019–1027 (2006). https://doi.org/10.1016/j.engstruct.2005.11.007

    Article  Google Scholar 

  67. Toğan, V., Daloğlu, A.T.: An improved genetic algorithm with initial population strategy and self-adaptive member grouping. Comput. Struct. 86(11), 1204–1218 (2008). https://doi.org/10.1016/j.compstruc.2007.11.006

    Article  Google Scholar 

  68. AISC-ASD (1989) Manual of steel construction-Allowable stress design. 9th edn. American Institute of Steel Construction (AISC), Chicago, IL, USA

  69. Kaveh, A., Ghazaan, M.I.: Optimal design of steel lattice transmission line towers. In: Ghazaan, M.I., Kaveh, A. (eds.) Meta-heuristic algorithms for optimal design of real-size structures, pp. 123–137. Springer, Cham (2018)

    Chapter  MATH  Google Scholar 

  70. Kaveh, A., Ilchi Ghazaan, M.: A comparative study of CBO and ECBO for optimal design of skeletal structures. Comput. Struct. 153, 137–147 (2015). https://doi.org/10.1016/j.compstruc.2015.02.028

    Article  Google Scholar 

  71. Fathali, M.A., Hoseini Vaez, S.R.: Optimum performance-based design of eccentrically braced frames. Eng. Struct. 202, 109857 (2020). https://doi.org/10.1016/j.engstruct.2019.109857

    Article  Google Scholar 

  72. Kaveh, A., Eslamlou, A.D.: Optimal design of steel curved roof frames by enhanced vibrating particles system algorithm. In: Kaveh, A., Eslamlou, A.D. (eds.) Metaheuristic optimization algorithms in civil engineering: new applications, pp. 73–97. Springer, Cham (2020)

    Chapter  MATH  Google Scholar 

  73. Kaveh, A., Izadifard, R.A., Mottaghi, L.: Optimal design of planar RC frames considering CO2 emissions using ECBO, EVPS and PSO metaheuristic algorithms. J. Build. Eng. 28, 101014 (2020). https://doi.org/10.1016/j.jobe.2019.101014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Rohollah Hoseini Vaez.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoseini Vaez, S.R., Fathali, M.A. & Mehanpour, H. A two-step approach for reliability-based design optimization in power transmission line towers. Int J Interact Des Manuf 16, 1015–1039 (2022). https://doi.org/10.1007/s12008-022-00838-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-00838-9

Keywords

Navigation