Skip to main content

Advertisement

Log in

Finite element study on the influence of fiber orientation on the high velocity impact behavior of fiber reinforced polymer composites

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

This study investigates the applicability of carbon and glass-based hybrid fabric reinforced polymer composites for ballistic applications due to their high specific strength, corrosion and impact resistance properties. The high velocity impact response of glass and carbon fiber-epoxy composites have been numerically investigated using ANSYS LS-Dyna simulation tool. The effect of reinforcement-fiber orientation on the impact response of composites was studied. Furthermore, hybrid and non-hybrid fiber reinforced polymer composites consisting of forementioned reinforcement fabrics were modelled to study the effect of fabric hybridization on the impact behavior of such composites. The results indicated that the cross-ply orientation (0/90) offers better resistance against impacts by hemispherical ended projectile of 9 mm diameter compared to other orientations and thus absorb more impact energy. The stacking of carbon fabric sandwiched between glass fabric layers was the optimum hybrid sequence to resist high velocity impacts at 373 m s−1 and absorb higher impact energy compared to other stacking sequences considered in this study. These hybrid composites are thus found to be ideal for sacrificial structural components to protect other sensitive installations as they are found to withstand impacts at velocities up to 127 m s−1 and are also cost-effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Clifton, S., Thimmappa, B.H.S., Selvam, R., Shivamurthy, B.: Polymer nanocomposites for high-velocity impact applications-a review. Compos. Commun. (2020). https://doi.org/10.1016/j.coco.2019.11.013

    Article  Google Scholar 

  2. Todor, M.P., Bulei, C., Heput, T., Kiss, I.: Researches on the development of new composite materials complete / partially biodegradable using natural textile fibers of new vegetable origin and those recovered from textile waste. In: IOP conference series: materials science and engineering. Institute of Physics Publishing (2018)

  3. Abo Sabah, S.H., Kueh, A.B.H.: Finite element modeling of laminated composite plates with locally delaminated interface subjected to impact loading. The Sci. World J. (2014). https://doi.org/10.1155/2014/954070

    Article  Google Scholar 

  4. Beckham, S., Beckham, S.: Mechanical damage - causes and solutions. In: Proceedings of the Short Course for Seedsmen. (1988)

  5. Sháněl, V., Španiela, M.: Ballistic impact experiments and modelling of sandwich armor for numerical simulations. In: Procedia Engineering. pp. 230–237. Elsevier Ltd (2014)

  6. Feli, S., Asgari, M.R.: Finite element simulation of ceramic/composite armor under ballistic impact. Compos. B Eng. 42, 771–780 (2011). https://doi.org/10.1016/j.compositesb.2011.01.024

    Article  Google Scholar 

  7. Bandaru, A.K., Ahmad, S.: Ballistic Impact behaviour of thermoplastic Kevlar composites: parametric studies. In: Procedia Engineering. pp. 355–362. Elsevier Ltd (2017)

  8. Laurenzi, S., Pastore, R., Giannini, G., Marchetti, M.: Experimental study of impact resistance in multi-walled carbon nanotube reinforced epoxy. Compos. Struct. 99, 62–68 (2013). https://doi.org/10.1016/j.compstruct.2012.12.002

    Article  Google Scholar 

  9. Berk, B., Karakuzu, R., Toksoy, A.K.: An experimental and numerical investigation on ballistic performance of advanced composites. J. Compos. Mater. 51, 3467–3480 (2017). https://doi.org/10.1177/0021998317691810

    Article  Google Scholar 

  10. Donadon, M. v., de Almeida, S.F.M., Arbelo, M.A., de Faria, A.R.: A three-dimensional ply failure model for composite structures. Int. J. Aerosp. Eng. (2009). https://doi.org/10.1155/2009/486063

  11. Reddy, A.C.: Evaluation of curing process for Bi-directional S-glass (5HS )/ Epoxy (780E + 782H ) composites fabricated by vacuum infusion process for wind energy blades. Int. J. Adv. Res. 3, 667–674 (2015)

    Google Scholar 

  12. Feraboli, P., Masini, A.: Development of carbon/epoxy structural components for a high performance vehicle. Compos. B Eng. 35, 323–330 (2004). https://doi.org/10.1016/j.compositesb.2003.11.010

    Article  Google Scholar 

  13. Kim, M.G., Hong, J.S., Kang, S.G., Kim, C.G.: Enhancement of the crack growth resistance of a carbon/epoxy composite by adding multi-walled carbon nanotubes at a cryogenic temperature. Compos. A Appl. Sci. Manuf. 39, 647–654 (2008). https://doi.org/10.1016/j.compositesa.2007.07.017

    Article  Google Scholar 

  14. Zahari, R., Pillai, J.R., Ordys, A., Hameed Sultan, M.T., Yidris, N.: Ballistic impact analysis of double-layered metal plates. In: IOP conference series: materials science and engineering. Institute of Physics Publishing (2018)

  15. NIJ Standard-0101.06: Ballistic resistance of personal body armor. NIJ Standards. 89 (2008)

  16. Sikarwar, R.S., Velmurugan, R.: Ballistic impact on glass/epoxy composite laminates. Def. Sci. J. 64, 393–399 (2014)

    Article  Google Scholar 

  17. Grujicic, M., Arakere, G., He, T., Gogulapati, M., Cheeseman, B.A.: A numerical investigation of the influence of yarn-level finite-element model on energy absorption by a flexible-fabric armour during ballistic impact. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 222, 259–276 (2008). https://doi.org/10.1243/14644207JMDA209

    Article  Google Scholar 

  18. Homrighausen, C., Wills, C., Fecko, D., Fisher, R.: Structural and ballistic comparison of various S-2 Glass® sizing/resin combinations. In: International SAMPE Technical Conference. (2012)

  19. Stephen, C., Shivamurthy, B., Mourad, A.H.I., Selvam, R.: High-velocity impact behavior of hybrid fiber-reinforced epoxy composites. J. Braz. Soc. Mech. Sci. Eng. (2021). https://doi.org/10.1007/s40430-021-03139-6

    Article  Google Scholar 

  20. Vangala, R., Devaiah, M., Rajendar, N., Raju, K.: Comparison of mechanical properties for carbon, E-glass and hybrid (carbon & E-glass) composites. Int. J. Mech. Eng. Technol. 10, 407–417 (2019)

    Google Scholar 

  21. Heimbs, S., Heller, S., Middendorf, P.: Simulation of low velocity impact on composite plates with compressive preload. LS-DYNA Anwenderforum. 11–24 (2008)

  22. Osborne, M.: Single-element characterization of the LS-DYNA MAT54 Material Model, (2012)

  23. AlOmari, A.S., Al-Athel, K.S., Arif, A.F.M., Al-Sulaiman, F.A.: Experimental and computational analysis of low-velocity impact on Carbon-, Glass- and mixed-fiber composite plates. J. Compos. Sci. 4, 148 (2020). https://doi.org/10.3390/jcs4040148

    Article  Google Scholar 

  24. Zhang, G.M., Batra, R.C., Zheng, J.: Effect of frame size, frame type, and clamping pressure on the ballistic performance of soft body armor. Compos. B Eng. 39, 476–489 (2008). https://doi.org/10.1016/j.compositesb.2007.04.002

    Article  Google Scholar 

  25. Stephen, C., Mourad, A.H.I., Shivamurthy, B., Selvam, R.: Energy absorption and damage assessment of non-hybrid and hybrid fabric epoxy composite laminates: experimental and numerical study. J. Market. Res. 14, 3080–3091 (2021). https://doi.org/10.1016/j.jmrt.2021.08.108

    Article  Google Scholar 

  26. Judge, R., Yang, Z.: Numerical simulation of spiral-strand cables subjected to high velocity fragment impact. In: 8th European LS-DYNA Users Conference, Strasbourg. pp. 1–11 (2011)

  27. LS-DYNA® KEYWORD USER’S MANUAL. Livermore Software Technology (LST), An ANSYS Company (2021)

  28. Sunt, C.T., Potti, S.V.: A simple model to predict residual velocities of thick composite laminates subjected to high velocity impact. Int. J. Impact Eng. 18, 339–353 (1996)

    Article  Google Scholar 

  29. Velmurugan, R., Naresh, K., Shankar, K.: Influence of fibre orientation and thickness on the response of CFRP composites subjected to high velocity impact loading. Adv. Mater. Process. Technol. 4, 120–131 (2018). https://doi.org/10.1080/2374068X.2017.1410688

    Article  Google Scholar 

  30. Seyed Yaghoubi, A., Liaw, B.: Effect of lay-up orientation on ballistic impact behaviors of GLARE 5 FML beams. Int. J. Impact Eng 54, 138–148 (2013). https://doi.org/10.1016/j.ijimpeng.2012.10.007

    Article  Google Scholar 

  31. Giannopoulos, I.K., Yasaee, M., Maropakis, N.: Ballistic impact and virtual testing of woven frp laminates. J. Compos. Sci. (2021). https://doi.org/10.3390/jcs5050115

    Article  Google Scholar 

  32. Liaw, B.: Hybrid carbon-glass fiber/toughened epoxy thick composite joints subject to drop-weight and ballistic impacts at various temperatures, (2007)

  33. Zhang, J., Chaisombat, K., He, S., Wang, C.H.: Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures. Mater. Des. 36, 75–80 (2012). https://doi.org/10.1016/j.matdes.2011.11.006

    Article  Google Scholar 

  34. Pérez-Martín, M.J., Enfedaque, A., Dickson, W., Gálvez, F.: Impact behavior of hybrid glass/carbon epoxy composites. J. Appl. Mech. Trans. ASME 80, 1–7 (2013). https://doi.org/10.1115/1.4023344

    Article  Google Scholar 

  35. Sánchez-Gálvez, V., Paradela, L.S., Gálvez, F.: Analytical simulation of high-speed impact onto hybrid glass/carbon epoxy composites targets. In: Procedia Engineering. pp. 101–108. Elsevier Ltd (2014)

  36. Zhang, C., Rao, Y., Li, Z., Li, W.: Low-velocity impact behavior of interlayer/intralayer hybrid composites based on carbon and glass non-crimp fabric. Materials (2018). https://doi.org/10.3390/ma11122472

    Article  Google Scholar 

  37. Hung, P. yan, Lau, K. tak, Cheng, L. kwan, Leng, J., Hui, D.: Impact response of hybrid carbon/glass fibre reinforced polymer composites designed for engineering applications. Compos. Part B Eng. 133, 86–90 (2018). https://doi.org/10.1016/j.compositesb.2017.09.026

  38. Randjbaran, E., Zahari, R., Abdul Jalil, N.A., Abang Abdul Majid, D.L.: Hybrid composite laminates reinforced with Kevlar/carbon/glass woven fabrics for ballistic impact testing. Sci. World J. (2014). https://doi.org/10.1155/2014/413753

    Article  Google Scholar 

  39. Rolfe, E., Kaboglu, C., Quinn, R., Hooper, P.A., Arora, H., Dear, J.P.: High velocity impact and blast loading of composite sandwich panels with novel carbon and glass construction. J. Dyn. Behav. Mater. 4, 359–372 (2018). https://doi.org/10.1007/s40870-018-0163-5

    Article  Google Scholar 

  40. Shaktivesh Nair, N.S., Sesha Kumar, C.V., Naik, N.K.: Ballistic impact performance of composite targets. Mater. Des. 51, 833–846 (2013). https://doi.org/10.1016/j.matdes.2013.04.093

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifton Stephen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stephen, C., Behara, S.R., Shivamurthy, B. et al. Finite element study on the influence of fiber orientation on the high velocity impact behavior of fiber reinforced polymer composites. Int J Interact Des Manuf 16, 459–468 (2022). https://doi.org/10.1007/s12008-021-00808-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-021-00808-7

Keywords

Navigation