Skip to main content

Advertisement

Log in

Expanding electric vehicles lifetime in power electronic stage using an optimized fuzzy logic controller

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Currently, electric vehicles can achieve high driving performance when they use brushless motors. Moreover, the demand for more electric vehicles pushes companies to improve their driving performance and improve the speed and torque response. However, the power electronics stages inside the vehicle must be studied during the vehicle's design and operation. Generally, when high driving performance is reached, the command signals for achieving this performance stressed the power electronics stage, so its lifetime could be decremented drastically. Thus, the power electronic stage has to be incorporated into the design of the speed controller and be optimized to expand its lifetime. This paper deals with the optimization process between the power electronic stage and the speed controller. As a result, the power electronics stage will expand its lifetime. Since there is not enough information about the lifetime of the power electronic stage into electric vehicles and how it is affected by the high driving performance conditions, this paper contributes to generating knowledge about its lifetime and how it could be improved. Besides, this work illustrates the implementation of a fuzzy logic speed controller optimized by particle swarm optimization using co-simulation. This controller is adapted according to the speed and lifetime requirements. A conventional PID controller is compared against the proposed controller to show the advantages of using co-simulation between Multisim and LabVIEW. As a result, the superior performance of the proposed controller is demonstrated when the temperature is controlled in electric vehicles, so the lifetime of the power electronics stage could be expanded. Also, this paper presents a novel approach using a metaheuristic optimization that runs online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Gao, D.W., Mi, C., Emadi, A.: Modeling and simulation of electric and hybrid vehicles. Proc. IEEE 95(4), 729–745 (2007). https://doi.org/10.1109/JPROC.2006.890127

    Article  Google Scholar 

  2. West, J.G.W.: DC, induction, reluctance and PM motors for electric vehicles. Power Eng. J. 8(2), 77–88 (1994). https://doi.org/10.1049/pe:19940203

    Article  Google Scholar 

  3. Pillay, P., Krishnan, R.: Modeling, simulation, and analysis of permanent-magnet motor drives. II. The brushless DC motor drive. IEEE Trans. on Ind. Appl. 25(2), 274–279 (1989). https://doi.org/10.1109/28.25542

    Article  Google Scholar 

  4. Nian, X., Peng, F., Zhang, H.: Regenerative braking system of electric vehicle driven by brushless DC motor. IEEE Trans. Ind. Electron. 61(10), 5798–5808 (2014). https://doi.org/10.1109/TIE.2014.2300059

    Article  Google Scholar 

  5. Batunlu, C., Alrweq, M., Albarbar, A.: Effects of power tracking algorithms on lifetime of power electronic devices used in solar systems. Energies 9(12), 884 (2016). https://doi.org/10.3390/en9110884

    Article  Google Scholar 

  6. Akin, B., Bhardwaj, M.: “Trapezoidal control of BLDC motors using hall effect sensors,” p. 33

  7. Lopez, M.G., Ponce, P., Soriano, L.A., Molina, A., Rivas, J.J.R.: A Novel Fuzzy-PSO controller for increasing the lifetime in power electronics stage for brushless DC drives. IEEE Access 7, 47841–47855 (2019). https://doi.org/10.1109/ACCESS.2019.2909845

    Article  Google Scholar 

  8. Bayerer, R., Herrmann, T., Licht, T., Lutz, J., Feller, M.: “Model for power cycling lifetime of IGBT Modules - various factors influencing lifetime,” In: 5th International conference on integrated power electronics systems, pp. 1–6 (2008)

  9. Ciappa, M., Fichtner, W.: “Lifetime prediction of IGBT modules for traction applications,” In: 2000 IEEE international reliability physics symposium proceedings. 38th Annual (Cat. No.00CH37059), pp. 210–216, (2000), https://doi.org/10.1109/RELPHY.2000.843917

  10. Ciappa, M.: Lifetime prediction on the base of mission profiles. Microelectron. Reliab. 45(9–11), 1293–1298 (2005). https://doi.org/10.1016/j.microrel.2005.07.060

    Article  Google Scholar 

  11. Bonyadi, M.R., Michalewicz, Z.: Particle swarm optimization for single objective continuous space problems: a review. Evol. Comput. 25(1), 1–54 (2017)

    Article  Google Scholar 

  12. Sermpinis, G., Theofilatos, K., Karathanasopoulos, A., Georgopoulos, E.F., Dunis, C.: Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and particle swarm optimization. Eur. J. Oper. Res. 225(3), 528–540 (2013)

    Article  MathSciNet  Google Scholar 

  13. Lv, C., Hu, X., Sangiovanni-Vincentelli, A., Li, Y., Martinez, C.M., Cao, D.: Driving-style-based codesign optimization of an automated electric vehicle: a cyber-physical system approach. IEEE Trans. Industr. Electron. 66(4), 2965–2975 (2018)

    Article  Google Scholar 

  14. Zhou, Q., Zhao, D., Shuai, B., Li, Y., Williams, H., Xu, H.: Knowledge implementation and transfer with an adaptive learning network for real-time power management of the plug-in hybrid vehicle. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3093429

    Article  Google Scholar 

  15. Lv, C., Xing, Y., Zhang, J., Na, X., Li, Y., Liu, T., Wang, F.Y.: Levenberg–Marquardt backpropagation training of multilayer neural networks for state estimation of a safety-critical cyber-physical system. IEEE Trans. Industr. Inf. 14(8), 3436–3446 (2017)

    Article  Google Scholar 

  16. De Gennaro, M., Paffumi, E., Martini, G., Manfredi, U., Scholz, H., Lacher, H., Simic, D.: Experimental investigation of the energy efficiency of an electric vehicle in different driving conditions (No. 2014-01-1817). SAE Technical Paper (2014)

  17. Yuan, X., Zhang, C., Hong, G., Huang, X., Li, L.: Method for evaluating the real-world driving energy consumptions of electric vehicles. Energy 141, 1955–1968 (2017)

    Article  Google Scholar 

  18. Darwich, I., Lachhab, I., Krichen, L.: “Improved electric Vehicle Performance Using on line PSO approach,” In: 2019 19th international conference on sciences and techniques of automatic control and computer engineering (STA), pp. 140–144, (2019), https://doi.org/10.1109/STA.2019.8717295.

  19. Andresen, M., Ma, K., Buticchi, G., Falck, J., Blaabjerg, F., Liserre, M.: Junction temperature control for more reliable power electronics. IEEE Trans. Power Electron. 33(1), 765–776 (2018). https://doi.org/10.1109/TPEL.2017.2665697

    Article  Google Scholar 

  20. Ali, M. Y., Raahemifar, K.: “Reactive power optimization based on hybrid particle swarm optimization algorithm, In: Electrical and Computer Engineering (CCECE), 2012 25th IEEE Canadian Conference on, 2012, pp. 1–5, Accessed: Oct. 08, 2017. [Online]. Available: http://ieeexplore.ieee.org/abstract/document/6334943/

  21. Huynh, D.C.: MPPT of solar PV panels using chaos PSO algorithm under varying atmospheric conditions. Int. J. Eng. Trends Technol. (IJETT) (2014). https://doi.org/10.14445/22315381/IJETT-V15P274

    Article  Google Scholar 

  22. Bachache, N.K., Wen, J.: Design fuzzy logic controller by particle swarm optimization for wind turbine. In: Tan, Y., Shi, Y., Mo, H. (eds.) Advances in swarm intelligence, pp. 152–159. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38703-6_18

    Chapter  Google Scholar 

  23. Vijay, M., Jena, D.: PSO based neuro fuzzy sliding mode control for a robot manipulator. J. Electric. Syst. Inf. Technol. 4(1), 243–256 (2017). https://doi.org/10.1016/j.jesit.2016.08.006

    Article  Google Scholar 

  24. Belghith, O.B., Sbita, L., Bettaher, F.: MPPT design using PSO technique for photovoltaic system control comparing to fuzzy logic and P&O controllers. Energy Power Eng. 08(11), 349–366 (2016). https://doi.org/10.4236/epe.2016.811031

    Article  Google Scholar 

  25. Bingül, Z., Karahan, O.: A fuzzy logic controller tuned with PSO for 2 DOF robot trajectory control. Expert Syst. Appl. 38(1), 1017–1031 (2011). https://doi.org/10.1016/j.eswa.2010.07.131

    Article  Google Scholar 

  26. “IGBT Power Cycling And Lifetime Testing,” Semiconductor Engineering, Jan. 15, 2015. https://semiengineering.com/igbt-power-cycling-and-lifetime-testing/ (Accessed Jun. 29, 2017).

  27. Herold, C., Franke, J., Bhojani, R., Schleicher, A., Lutz, J.: Requirements in power cycling for precise lifetime estimation. Microelectron. Reliab. 58, 82–89 (2016). https://doi.org/10.1016/j.microrel.2015.12.035

    Article  Google Scholar 

  28. Baygildina, E., Smirnova, L, Peltoniemi, P, Pyrhonen, O., Ma, K.: “Power semiconductor lifetime estimation considering dynamics of wind turbine,” pp. 1–6, (2014) https://doi.org/10.1109/PEMWA.2014.6912226

  29. Sarkany, Z., Vass-Varnai, A., Laky, S., Rencz, M.: “Thermal transient analysis of semiconductor device degradation in power cycling reliability tests with variable control strategies,” In: 2014 semiconductor thermal measurement and management symposium (SEMI-THERM), pp. 236–241, (2014) https://doi.org/10.1109/SEMI-THERM.2014.6892246

  30. “Thermal stress analysis for IGBT inverter systems,” In: 2010 IEEE vehicle power and propulsion conference, pp. 1–5, (2010) https://doi.org/10.1109/VPPC.2010.5729054

  31. Blaabjerg, F., Ma, K.: Future on power electronics for wind turbine systems. IEEE J. Emerg. Selected Topics Power Electron. 1(3), 139–152 (2013). https://doi.org/10.1109/JESTPE.2013.2275978

    Article  Google Scholar 

  32. Choi, U.M., et al.: Power cycling test and failure analysis of molded intelligent power IGBT module under different temperature swing durations. Microelectron. Reliab. 64, 403–408 (2016). https://doi.org/10.1016/j.microrel.2016.07.020

    Article  Google Scholar 

  33. Alghassi, A., Soulatiantork, P., Samie, M., Pozo, A.U.D., Perinpanayagam, S., Faifer, M.: Fault tolerance enhance DC-DC converter lifetime extension. Procedia CIRP 59, 268–273 (2017). https://doi.org/10.1016/j.procir.2017.02.014

    Article  Google Scholar 

  34. Hu, W., Foitzik, B., Cao, C.-T., Guhmann, C.: “Reliability based lifetime prediction and optimization for permanent magnet synchronous machines,” In: 2009 6th international multi-conference on systems, signals and devices, pp. 1–6, (2009) https://doi.org/10.1109/SSD.2009.4956655

  35. Mawby, P.A., et al.: Study on the lifetime characteristics of power modules under power cycling conditions. IET Power Electron. 9(5), 1045–1052 (2016). https://doi.org/10.1049/iet-pel.2015.0225

    Article  Google Scholar 

  36. Nguyen, V., Besanger, Y., Tran, Q., Nguyen, T.: On Conceptual structuration and coupling methods of co-simulation frameworks in cyber-physical energy system validation. Energies 10(12), 1977 (2017). https://doi.org/10.3390/en10121977

    Article  Google Scholar 

  37. Fitzgerald, J., Larsen, P. G., Verhoef, M. Eds.: Collaborative design for embedded systems. Berlin, Heidelberg: Springer Berlin Heidelberg, (2014)

  38. Abderrezek, H., Harmas, M.N.: PSO based adaptive terminal sliding mode controllers for a DC-DC converter. Int. J. Comput. Theory Eng. 6(4), 302–306 (2014). https://doi.org/10.7763/IJCTE.2014.V6.879

    Article  Google Scholar 

  39. Fajri, P.: “Electric-drive vehicle emulation using advanced test bench,” PhD Thesis, Missouri University of Science and Technology, (2014)

  40. “Drive Cycle Analysis Tool — DriveCAT | Transportation Research | NREL,” 2020. https://www.nrel.gov/transportation/drive-cycle-tool/ (accessed Mar. 04, 2020)

  41. O. US EPA, “Dynamometer Drive Schedules,” US EPA, Sep. 16, 2015. https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules (Accessed Mar. 04, 2020)

  42. Kwon, J., Kim, J., Fallas, E., Pagerit, S., Rousseau, A.: Impact of drive cycles on PHEV component requirements (No. 2008-01-1337). SAE Technical Paper (2008)

  43. Fotouhi, A., Propp, K., Auger, D. J.: Electric vehicle battery model identification and state of charge estimation in real world driving cycles. In: 2015 7th computer science and electronic engineering conference (CEEC) (pp. 243–248). IEEE (2015)

  44. Zhou, Q., Li, Y., Zhao, D., Li, J., Williams, H., Xu, H., Yan, F.: Transferable representation modelling for real-time energy management of the plug-in hybrid vehicle based on k-fold fuzzy learning and Gaussian process regression. Appl. Energy 305, 117853 (2022)

    Article  Google Scholar 

  45. Xing, Y., Lv, C.: Dynamic state estimation for the advanced brake system of electric vehicles by using deep recurrent neural networks. IEEE Trans. Industr. Electron. 67(11), 9536–9547 (2019)

    Article  Google Scholar 

  46. Pillay, P., Krishnan, R.: Application characteristics of permanent magnet synchronous and brushless DC motors for servo drives. IEEE Trans. Ind. Appl. 27(5), 986–996 (1991). https://doi.org/10.1109/28.90357

    Article  Google Scholar 

  47. Fuji Electric, FUJI IGBT MODULES APPLICATION MANUAL. Fuji Electric Device Technology Co., Ltd., (2015)

  48. Soulatiantork, P., Alghassi, A., Faifer, M., Perinpanayagam, S.: IGBT thermal stress reduction using advance control strategy. Procedia CIRP 59, 274–279 (2017). https://doi.org/10.1016/j.procir.2016.09.040

    Article  Google Scholar 

  49. Infineon, “AN 2015-10, Transient thermal measurements and thermal equivalent circuit models,” (2012)

  50. Du, X., Zhang, J., Li, G., Tai, H.-M., Sun, P., Zhou, L.: Lifetime estimation for IGBT modules in wind turbine power converter system considering ambient temperature. Microelectron. Reliab. 65, 69–78 (2016). https://doi.org/10.1016/j.microrel.2016.07.141

    Article  Google Scholar 

  51. “IGBT Thermal Diode - Multisim Help - National Instruments.” http://zone.ni.com/reference/en-XX/help/375482B-01/multisim/igbtdiodethemal/#wp1943960 (Accessed Feb. 21, 2018)

  52. Ma, K., Vernica, I., Blaabjerg, F.: “Advanced design tools for the lifetime of power electronics-study case on motor drive application,” In: power electronics and motion control conference (IPEMC-ECCE Asia), 2016 IEEE 8th international, 2016, pp. 3255–3261, Accessed: Jun. 29, 2017. [Online]. Available: http://ieeexplore.ieee.org/abstract/document/7512816/

  53. Renesas: Semiconductor Reliability Handbook, (2017)

  54. Vincotech, “10-0B066PA006SB-M992F09 Datasheet.” (2017) [Online]. Available: https://www.vincotech.com/fileadmin/user_upload/product_media/10-0b066pa006sb-m992f09-d3-14.pdf

  55. Ponce-Cruz, P., Gutiérrez, A. M., Ramírez-Mendoza, R. A., Flores, E. M., Espinoza, A. A. O., Silva, D. C. B. A: Practical approach to metaheuristics using LabVIEW and MATLAB®. CRC Press, (2020)

  56. Abdulkadir, M., Yatim, A.H.M., Yusuf, S.T.: An improved PSO-based MPPT control strategy for photovoltaic systems. Int. J. Photoenergy 2014, 1–11 (2014). https://doi.org/10.1155/2014/818232

    Article  Google Scholar 

  57. Altinoz, O.T., Yilmaz, A.E., Weber, G.W.: Application of chaos embedded PSO for PID parameter tuning. Int. J. Comput. Commun. Control 7(2), 204–217 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial and technical support of Tecnologico de Monterrey in the production of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Ponce.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponce, P., MacCleery, B., Soriano, L.A. et al. Expanding electric vehicles lifetime in power electronic stage using an optimized fuzzy logic controller. Int J Interact Des Manuf 16, 49–63 (2022). https://doi.org/10.1007/s12008-021-00794-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-021-00794-w

Keywords

Navigation