Biometrics technology is gaining momentum. In 2001 the MIT Technology Review considered biometrics a world-changing emerging technology [59]. Biometric technologies are disrupting several industries and sectors. General applications include its use for recreational activities, such as in Disneyland. It can also be used for replacing password systems. Innovative devices have also been developed, such as a mouse that recognizes the fingerprint of its owner. ATMs also use this technology [40].
There is also another exciting field of biometrics, in which the emotional and cognitive state of people are detected. This can be used to monitor student's behavior/emotions and change the educational process appropriately. For example, researchers argue that boredom negatively influences learning, whereas engagement improves learning outcomes; biometric sensors have been used to measure electrodermal activity, skin temperature, and heart rate, all good predictors of emotions [73]. Biometrics allows academic institutions to save time, money and also improve educational and non-educational activities. They also offer convenience, safety, and security. Various applications are identified: school access, control of attendance, food service, access to library and media center, bus transportation, control staff time, among others (Fry and Dunphy, n.d.). In addition to identifying students, access control, and personal data management, it has critical applications to improve teaching/learning processes in the educational domain, Fig. 3.
Identity management system
Biometric person recognition systems share many issues and challenges with other pattern recognition applications like video surveillance, speech technologies, human–computer interaction, data analytics applications, behavioral modeling, or recommender systems. Identity Management Systems (IMS) are platforms where a permission device gives access to a specific service. These are used in education to provide access to a given product or service or for electronic registration. Passwords are very unsafe and sometimes created to be easy to remember. Biometrics are used in this area for security reasons, as it can grant access to a given system to only authorized persons, identified by their physical or behavioral characteristics [59]. Fingerprint cards are already used in schools for students that acquire free meals in coffee shops [23]. Indeed, the use of fingerprints is a common practice from elementary school to universities/research centers.
Nita and Mihailescu [48] proposed a secure e-learning system based on biometric authentication and homomorphic encryption exploiting cloud computing. Additionally, this proposal predicts if he/she would pass a final exam based on past data of the user’s behavior (using biometrics data).
Class attendance
With biometrics, the attendance of students to a given class can be accelerated. This is advantageous since time devoted to taking attendance is reduced. Also, a more accurate registration process can be performed, diminishing errors [9]. This technology also enables identifying causes and patterns of absence, and the behavioral characteristics of students can be correlated with class achievement. Analysis of absence between year groups and groups of individuals can also be performed. Universities can also use this technology to track students [60].
The University of Sunderland London Campus is already using this technology to report class attendance. They use a portable device that has a fingerprint sensor. When students enter the class, they put their fingers on the device to easily register their presence. In India, Delhi University uses this system to track professors’ attendance to class [10]. In addition, researchers used a biometric fingerprint device to improve active class participation in those classes that consist of a pure lecture. It was combined with a rewarding activity resulting in improved student engagement and class results [32]. Finally, this technology can also be used in online activities or education to manage time effectively [29].
e-Evaluation
The submission of e-exams is a relatively new use of biometrics (i.e., since 2017). However, research in this area has been headed by international organizations such as the European Union with its project Adaptive trust-based E-system Assessment for Learning. In these projects, 17 European organizations use keystroke and facial recognition technologies to identify university student's identities and reduce cheating [25].
Fingerprint recognition can be used for students to take online exams. In this case, learners must verify their identity, and only after that, the exam can be shown on the screen. This can be done by identifying them through facial, iris, or voice recognition. Either the characteristic used, a student sample must be first taken to perform the matching process [15, 16].
Biometric systems (finger scans) to verify the identity of IELTS test takers have been implemented globally. As a result, IELTS is available in over 900 locations in 130 countries, making the British Council and IDP IELTS [10].
Security
Biometrics is a useful technology to identify students and ensure no outsiders either in class or on the university’s campus. On the other hand, this technology can be used in combination with surveillance cameras to detect strangers. In addition, a blocking protocol can be activated in an emergency on campus to ensure that no one enters or leaves. Using identification chips (based on radio frequency) and combining them with intelligent data, students can be located to guarantee their safety. Biometric systems can also limit access to computers, emails, websites, and other restricted educational tools (assessments) [29]. Finally, students’ presence on campus can be tracked by knowing at any time where they are, when they arrived and left, and where they went [18].
Higher Education is becoming one of the most popular targets for cyberattacks because universities have relatively open networks. For example, universities have several wireless networks that connect their areas using multiple bandwidths; these multiple networks lead to an output that contains student data (payment information, social security number, personal addresses, etc.). Additionally, universities must comply with various laws to protect student data; these law's guidelines may restrict the institution's IT infrastructure or leave it vulnerable to hackers (Bio-KeyTM, n.d.).
The computer industry is changing rapidly, and people are pushing toward a new technological system buying the latest editions of phones and computers. However, inexperienced users coming into technology rapidly, many of them could unintentionally expose information without realizing it. An inexperienced user can potentially be subject to scams, spoofing, and phishing because the university network allows hackers to enter and exit a system without being detected swiftly. Educational institutions establish an open network architecture with multiple access points; if someone misplaced their cellular phone, a hacker could potentially log into the system and access the entire mainframe.
If intellectual property (patents, documented permission) is stolen, it could cost the institution a large amount of money. Faculty and student personal identification are available; it includes healthcare, credit card/payment, etc. Also, students and faculty have highly sensitive data (bank accounts, personal addresses, etc.). There are many government regulations that Higher Education institutions must follow. Still, in doing so, they expose themselves to a possible attack that they cannot stop due to the regulations. Cyber attacks in Higher Education date back to 2002, Table 3 [41]. The hackers’ goal remains personal data, social security numbers, financial information, opening up a new credit card, collecting tax refund, etc.
Table 3 History of cyber attacks in higher education Biometrics enable body-based security—a technology that authenticates identity based on physical characteristics such as fingerprints, irises, facial structure, voice, and even gestures. Fingerprint authentication (the most commonly used biometric technology) is based on a unique set of identification. Instead of using a passcode, only one person can log into a system using this biometrics technology. Students can start using their fingerprints as their credentials for several reasons: (a) the authentication rarely fails, (b) fingerprints do not rely on memory, (c) rapid system recognition of the fingerprint. By establishing fingerprint authentication, biometrics can protect network architecture and access to other areas. Biometrics is going to be the most powerful technology against cyber-attacks in Higher Education.
Understand students’ motivation and academic progress
In addition to knowing the course's educational content, a good teacher must know their students very well and identify their cognitive status to guide the teaching–learning process properly. For example, if the teacher determines the student's commitment or motivation, he can use different educational strategies to optimize the teaching process. However, when the educational process is done remotely, and for many students, automated system's support is required. This is where biometric technology opens up an excellent opportunity to develop strategies that help detect student's cognitive states.
Due to their influence on learning, emotional states play a crucial role in education in general. Boredom has been shown to influence learning, while engagement can positively improve learning outcomes. Frustration and confusion can positively affect learning if the student can resolve these states. Estimating prediction in real-time of student's affective states is a research topic of great interest due to its benefits through different intervention strategies [24]. The collection of appropriate biometric data and the analysis of physiological and behavioral patterns during a learning experience can help introduce proper interventions to improve the learning experience as the main hypotheses in this domain.
Biometrics provides an objective measure of the physiological reactivity of users that is used to infer affective states. Electrodermal activity, skin temperature, and heart rate showed high performance as predictors of emotions [34, 35, 55]. Wampfler et al. [73] predict a student's affective states (while solving math exercises) using arbitrary writing and drawing assignments (based on stylus data).
A low-cost mobile setup to detect student's affective states (non-intrusive and minimum issues related to privacy) is proposed. The system considers bio-sensor data from skin conductance, heart measures, and skin temperature with handwriting data recorded by a stylus to predict student's affective state in a valence-arousal space of emotions proposed [54]. Valence describes how much emotion is perceived as positive/negative, and arousal represents the emotion's intensity. The circumplex model has two dimensions representing affective states in terms of valence/arousal. The circumplex model has the leading eight affective states (Arousal-0o, Excitement-45o, Pleasure-90o, Contentment-135o, Sleepiness-180o, Depression-135o, Misery-270o, and Distress-315o). The pleasantness-unpleasantness and arousal-sleep dimensions account for the significant proportion of variance; the dimensions of the effects are bipolar; any effect could be defined as combining pleasure and arousal components. Recorded stylus and bio-sensor data are preprocessed, and the relevant features are extracted to train a classification model (using the Random Forest algorithm) for the specific affective regions. Early results are very promising and practical; however, more experiments and validations are required to have overall effects in other knowledge and educational settings.
Dafoulas et al. [13] used a range of sensors measuring critical data from individual learners, including heartbeat, emotion detection (anger, disgust, fear, happiness, sadness, and surprise), sweat levels, voice fluctuations, and duration/pattern of contribution via voice recognition. Employing biometrics for supporting assessment, facilitating, and enhancing learning experiences in collaborative learning.
Smart biosensors and cameras (infrared) can identify and track students, diagnose their behavioral state (body language and eye contact) and their peer's actions. This can aid in making opportunely changes in the teaching–learning processes and improve students’ results. Also, online student engagement diagnosis will help teachers use the needed teaching strategies and technologies to optimize student's learning.
Many scientific projects have been developed to investigate and estimate student's cognitive states during the teaching/learning processes, based on data and evidence using biometric technology. With this information, the educational process can be optimized. Preliminary results are reasonable; however, research must continue to obtain general, practical, and valid conclusions in different domains. Based on biometric technology, it is possible to assess a student's academic progress and customize strategies to help him achieves his goals [29].
Biometrics in learning analytics
Learning Analytics is defined as measuring, collecting, analyzing, and reporting data about students and their learning contexts to understand and optimize the learning process and the learning environment [58]. Learning Analytics is an area of technology-enhanced learning, Big data, cloud technologies, virtual reality, brain-computer interface are some of the technologies that powered Learning Analytics.
LA benefits are: (1) prediction of student performance, (2) personalized student experience, (3) student confinement increases, (4) improves e-learning systems, (5) enhances cost-efficiency. To achieve these Learning Analytics benefits, it is necessary to collect data from various sources. Many data sources vary among many fields, including written or online surveys, interviews, students’ opinions, improvements suggestions, web tools, and more sensitive data: biometric data. The focus is on biometric data due to the recent technologies and devices that enable collecting and analyzing such data [15, 16].
Social Network Analysis, GISMO (student-monitoring tool), CourseVis (learning management system), Contextualised Attention Metadata, LOCO-Analyst, Social Networks Adapting Pedagogical Practice (SNAPP), Honeycomb, Gephi, sense.us, Signals, and GRAPPLE Visualisation Infrastructure Service (GVIS) are some of the Learning Analytics tools that have been developed over time [20].
Secure access to information and data privacy of learners’ data shall be provided as one of the essential issues that biometric-based systems can quickly solve. Brain-Computer Interface (BCI) is a direct communication channel between the human brain and a computer. BCI is a Human–Computer Interface branch oriented towards research human cognitive, sensorial, or motor functions [38]. EEG-based BCI can help focus student attention and memory retention. It can also measure affective states and adapt the challenge difficulty to the learner’s emotions or even measure the engagement level. This area can improve learning and opens up a large area of research to help people with disabilities.
Over time, tracing Learning Analytics development highlights a gradual shift away from a technological focus towards an educational focus. Factors driving the growth of Learning Analytics:
-
(a)
Big data: Significant amounts of learner activity take place, and records are distributed across a variety of different sites with different standards, owners, and levels of access.
-
(b)
Online learning: Learning online offers many benefits, but it is also associated with problems.