Skip to main content

Co-creation of an assistive robot for independent living: lessons learned on robot design

Abstract

To increase the usage of assistive robots into daily life it is important to include end-users in early development stages. This paper propose an iterative co-creative method to refine the design of an assistive robot called ASTRO. Three co-creation sessions were organized involving a total of 102 individuals. This paper presents the feedback collected and provides the results from an evaluation of the final prototype. The results underline that the robot’s design was perceived in a positive way (attractiveness and stimulation domains). Even though the co-creation results show that the function of the robot are also valued, the survey provides a more nuanced view on these aspects of robot design by showing a neutral evaluation of perspicuity, efficiency and dependability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. International Federation of Robotics (IFR) official website: https://ifr.org/.

  2. Cresco Lab Website: https://crescolab.jimdo.com/.

References

  1. Eurostat: Population Structure and Ageing—Statistics Explained. http://ec.europa.eu/eurostat/statistics-explained/index.php/Population_structure_and_ageing. Accessed 26 Oct 2017

  2. World Health Organization: World Report on Ageing and Health. World Health Organization, Geneva (2015)

    Google Scholar 

  3. Mahlknecht, P., Kiechl, S., Bloem, B.R., Willeit, J., Scherfler, C., Gasperi, A., et al.: Prevalence and burden of gait disorders in elderly men and women aged 60–97 years: a population-based study. PLoS ONE 8, e69627 (2013). https://doi.org/10.1371/journal.pone.0069627

    Article  Google Scholar 

  4. Burke, N., Dautenhahn, K., Saunders, J., Koay, K.L., Syrdal, D.S.: “Teach me–show me”—end-user personalization of a smart home and companion robot. IEEE Trans. Hum. Mach. Syst. 46, 27–40 (2015). https://doi.org/10.1109/thms.2015.2445105

    Article  Google Scholar 

  5. Kolling, T., Haberstroh, J., Kaspar, R., Pantel, J., Oswald, F., Knopf, M.: Evidence and deployment-based research into care for the elderly using emotional robots. GeroPsych (Bern) 26, 83–88 (2013). https://doi.org/10.1024/1662-9647/a000084

    Article  Google Scholar 

  6. Baisch, S., Kolling, T., Schall, A., Rühl, S., Selic, S., Kim, Z., et al.: Acceptance of social robots by elder people: does psychosocial functioning matter? Int. J. Soc. Robot. 9, 293–307 (2017). https://doi.org/10.1007/s12369-016-0392-5

    Article  Google Scholar 

  7. Fiorini, L., Esposito, R., Bonaccorsi, M., Petrazzuolo, C., Saponara, F., Giannantonio, R., et al.: Enabling personalised medical support for chronic disease management through a hybrid robot-cloud approach. Auton. Robots 41, 1263–1276 (2017). https://doi.org/10.1007/s10514-016-9586-9

    Article  Google Scholar 

  8. Schrepp, M., Hinderks, A., Thomaschewski, J.: Applying the User Experience Questionnaire (UEQ) in Different Evaluation Scenarios, pp. 383–392. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07668-3_37

    Book  Google Scholar 

  9. Tractinsky, N., Box, P.O., Sheva, B.: Aesthetics and Apparent Usability : Empirically Assessing Cultural and Methodological Issues 1997, pp. 115–22

  10. Sanders, E.B.-N., Stappers, P.J.: Convivial Toolbox. BIS Publishers, Amsterdam (2012)

    Google Scholar 

  11. de Graaf, M.M.A., Ben Allouch, S., van Dijk, J.A.G.M.: Why would I use this in my home? A model of domestic social robot acceptance. Hum. Comput. Interact. 34, 115–173 (2019). https://doi.org/10.1080/07370024.2017.1312406

    Article  Google Scholar 

  12. Alaiad, A., Zhou, L.: The determinants of home healthcare robots adoption: an empirical investigation. Int. J. Med. Inform. 83, 825–840 (2014). https://doi.org/10.1016/J.IJMEDINF.2014.07.003

    Article  Google Scholar 

  13. Eimler, S.C., Krämer, N.C., von der Pütten, A.M.: Empirical results on determinants of acceptance and emotion attribution in confrontation with a robot rabbit. Appl. Artif. Intell. 25, 503–529 (2011). https://doi.org/10.1080/08839514.2011.587154

    Article  Google Scholar 

  14. Coradeschi, S., Cesta, A., Cortellessa, G., Coraci, L., Galindo, C., Gonzalez, J., et al.: GiraffPlus: a system for monitoring activities and physiological parameters and promoting social interaction for elderly, pp. 261–271. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08491-6_22

    Book  Google Scholar 

  15. Georgiadis, D., Christophorou, C., Kleanthous, S., Andreou, P., Santos, L., Christodoulou, E., et al.: A Robotic Cloud Ecosystem for Elderly Care and Ageing Well: The GrowMeUp Approach, pp. 919–924. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32703-7_179

    Book  Google Scholar 

  16. Sancarlo, D., D’Onofrio, G., Oscar, J., Ricciardi, F., Casey, D., Murphy, K., et al.: MARIO Project: A Multicenter Survey About Companion Robot Acceptability in Caregivers of Patients with Dementia, pp. 311–336. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54283-6_24

    Book  Google Scholar 

  17. Fiorini, L., D’Onofrio, G., Limosani, R., Sancarlo, D., Greco, A., Giuliani, F., et al.: ACCRA project: agile co-creation for robots and aging. In: 8th Forum Italian Ambient Assisted Living, ForItAAL. Genova. Springer, Cham, pp. 133–150. https://doi.org/10.1007/978-3-030-04672-9_9

  18. Karunarathne, D., Morales, Y., Nomura, T., Kanda, T., Ishiguro, H.: Will older adults accept a humanoid robot as a walking partner? Int. J. Soc. Robot. 11, 343–358 (2019). https://doi.org/10.1007/s12369-018-0503-6

    Article  Google Scholar 

  19. Leung, M., Yu, J., Chow, H.: Impact of indoor facilities management on the quality of life of the elderly in public housing. Facilities 34, 564–579 (2016). https://doi.org/10.1108/F-06-2015-0044

    Article  Google Scholar 

  20. Kim, H., Hirano, H., Edahiro, A., Ohara, Y., Watanabe, Y., Kojima, N., et al.: Sarcopenia: prevalence and associated factors based on different suggested definitions in community-dwelling older adults. Geriatr. Gerontol. Int. 16, 110–122 (2016). https://doi.org/10.1111/ggi.12723

    Article  Google Scholar 

  21. Moschetti, A., Cavallo, F., Esposito, D., Penders, J., Di, Nuovo A.: Wearable sensors for human–robot walking together. Robotics 8, 38 (2019)

    Article  Google Scholar 

  22. Piezzo, C., Suzuki, K.: Feasibility study of a socially assistive humanoid robot for guiding elderly individuals during walking. Future Internet (2017). https://doi.org/10.3390/fi9030030

    Article  Google Scholar 

  23. KOMPAÏ Robotics: KOMPAÏ Robots Help Frail People and Caregivers 2017. https://kompai.com/. Accessed 16 Jan 2018

  24. Cavallo, F., Aquilano, M., Bonaccorsi, M., Limosani, R., Manzi, A., Carrozza, M.C., et al.: On the design, development and experimentation of the ASTRO assistive robot integrated in smart environments. In: 2013 IEEE International Conference on Robotics and Automation, pp. 4310–4315. IEEE. https://doi.org/10.1109/icra.2013.6631187 (2013)

  25. Cavallo, F., Esposito, R., Limosani, R., Manzi, A., Bevilacqua, R., Felici, E., et al.: Acceptance of Robot-Era system: results of robotic services in smart environments with older adults. J. Med. Int. Res. (2018). https://doi.org/10.2196/jmir.9460

    Article  Google Scholar 

  26. Cesta, A., Cortellessa, G., Orlandini, A., Tiberio, L.: Long-Term Evaluation of a Telepresence Robot for the Elderly: Methodology and Ecological Case Study. Int. J. Soc. Robot. 8, 421–441 (2016). https://doi.org/10.1007/s12369-016-0337-z

    Article  Google Scholar 

  27. Latikka, R., Turja, T., Oksanen, A.: Self-efficacy and acceptance of robots. Comput. Hum. Behav. 93, 157–163 (2019). https://doi.org/10.1016/j.chb.2018.12.017

    Article  Google Scholar 

  28. Wu, Y.H., Wrobel, J., Cornuet, M., Kerhervé, H., Damnée, S., Rrigaud, A.S.: Acceptance of an assistive robot in older adults: a mixed-method study of human-robot interaction over a 1-month period in the living lab setting. Clin. Interv. Aging 9, 801–811 (2014). https://doi.org/10.2147/CIA.S56435

    Article  Google Scholar 

  29. Fiorini, L., Limosani, R., Coviello, L., Vitanza, A., Donofrio, G., Greco, F., et al.: Design and development of a robotic sensorized handle for monitoring older adult grasping force*. In: 2018 7th IEEE International Conference for Biomedical Robotics and Biomechatronics, pp. 1095–1100. IEEE. https://doi.org/10.1109/biorob.2018.8487649

  30. Laugwitz, B., Held, T., Schrepp, M.: Construction and Evaluation of a User Experience Questionnaire, pp. 63–76. Springer, Berlin (2008). 10.1007/978-3-540-89350-9_6

    Google Scholar 

  31. Gerłowska, J., Skrobas, U., Grabowska-Aleksandrowicz, K., Korchut, A., Szklener, S., Szczȩśniak-Stańczyk, D., et al.: Assessment of perceived attractiveness, usability, and societal impact of a multimodal robotic assistant for aging patients with memory impairments. Front Neurol. 9, 1–13 (2018). https://doi.org/10.3389/fneur.2018.00392

    Article  Google Scholar 

  32. Gavard-Perret, M.-L.: Méthodologie de la recherche en sciences de la gestion. In: Gavard-Perret, M.-L., Gotteland, D., Haon C., Jolibert A. (eds.) 2e édition, p 415, Pearson France, Paris (2012)

  33. Schmitt, N.: Uses and abuses of coeicient alpha. Psychological Assessment, Vol. S, No 4, pp. 350–353 (1946)

  34. Kelley, K., Preacher, K.J.: On effect size. Psychol. Methods 17, 137–152 (2012). https://doi.org/10.1037/a0028086

    Article  Google Scholar 

  35. Eyssel, F.: An experimental psychological perspective on social robotics. Rob. Auton. Syst. 87, 363–371 (2017). https://doi.org/10.1016/J.ROBOT.2016.08.029

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the ACCRA Project, founded by the European Commission – Horizon 2020 Founding Programme (H2020-SCI-PM14-2016) and National Institute of Information and Communications Technology (NICT) of Japan under grant agreement No. 738251.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Fiorini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 619 kb)

Supplementary material 2 (PDF 623 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fiorini, L., Tabeau, K., D’Onofrio, G. et al. Co-creation of an assistive robot for independent living: lessons learned on robot design. Int J Interact Des Manuf 14, 491–502 (2020). https://doi.org/10.1007/s12008-019-00641-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-019-00641-z

Keywords

  • Creative design
  • Design technology
  • Assistive robot design
  • User participation
  • Case study