Advertisement

Emotional domotics: a system and experimental model development for UX implementations

  • Sergio A. Navarro-TuchEmail author
  • Ariel A. Lopez-Aguilar
  • M. Rogelio Bustamante-BelloEmail author
  • Arturo Molina
  • Javier Izquierdo-Reyes
  • Luis A. Curiel Ramirez
Original Paper

Abstract

The Emotional Domotics (home automation) is a concept that has been one of the main focus of our research team seeks to integrate the subject or user of an inhabitable space as central element for the modulation and control of the environmental variables in a house automation implementation for the life quality improvement and in consequence as a method to reduce stress. Even though this project is centered on domotics systems. The development and implementations proved useful as a User Experience analysis tool for products and services. The research originally proposed working with the analysis of the influence of environmental variables on the emotional and physiological response. The first experimental results led to the finding of the emotional response time dynamics (Navarro-Tuch et al., in: SAI Intelligent Systems Conference. London, pp 567–571, 2016). Such dynamics were important for further design and implementation of the testing methodology for response analysis to alternative stimuli. The final sections of the work present a final experiment in which the stimuli contemplated were the temperature, humidity, light intensity and visual stimuli with the corresponding testing methodology implementation. Which led to the final correlation equations for each of five basic emotions selected. These equations may allow us to propose an initial plant model for a control system to be developed by further research.

Keywords

Emotional domotics Model acquisition User experience (UX) KNX House automation 

Notes

Acknowledgements

We thank Prof. Yadira Gutierrez Martinez, Prof. Jose Luis Pablos Hach, Prof. Martin Francisco Cortés Bernal, Prof. Arturo Arteaga Rios, Dr. David Sanchez Monroy for their contributions for the development of this project; this research is being supported by Centro de Investigación en Microsistemas y Biodiseño (CIMB) at Tecnologico de Monterrey, Campus Ciudad de Mexico, with aid from KNX Association Mexico and TROnik Edificios Inteligentes.

Funding

Funding was provided by Consejo Nacional de Ciencia y Tecnología (Grant No. 339635).

References

  1. 1.
    Navarro-Tuch, S.A., Bustamante-Bello, M.R., Avila-Vazquez, R., Izquierdo-Reyes, J., Ramirez-Mendoza, R., Gutierrez-Martinez, Y., Hach Pablos, J.L.: Emotional domotics: inhabitable space variable control for the emotions modulation. In: SAI Intelligent Systems Conference, pp. 567–571. London (2016)Google Scholar
  2. 2.
    Paoli, P: Second European survey on working conditions. In: Technical Report, European Foundation for the Improvement of Living and Working Conditions, Co. Dublin (1997).  https://doi.org/10.1017/CBO9781107415324.004
  3. 3.
    Peiró, J.: El estrés laboral: una perspectiva individual y colectiva. Instituto Nacional de Seguridad e Higiene en el Trabajo 1(13–2001), 18–38 (2001)Google Scholar
  4. 4.
    Hall, J.E., Guyton, A.C.: Guyton and Hall Textbook of Medical Physiology, 12th edn. Saunders Elsevier, Philadelphia (2006)Google Scholar
  5. 5.
    Everly, G.S., Lating, J.M.: A Clinical Guide to the Treatment of the Human Stress Response, vol. 254. Springer, New York (2013).  https://doi.org/10.1007/978-1-4614-5538-7 CrossRefGoogle Scholar
  6. 6.
    Joëls, M., Sarabdjitsingh, R.A., Karst, H.: Unraveling the time domains of corticosteroid hormone influences on brain activity: rapid, slow, and chronic modes. Pharmacol. Rev. 64(4), 901–38 (2012).  https://doi.org/10.1124/pr.112.005892 CrossRefGoogle Scholar
  7. 7.
    Finsterwald, C., Alberini, C.M.: Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies. Neurobiol. Learn. Memory 112, 17–29 (2014).  https://doi.org/10.1016/j.nlm.2013.09.017 CrossRefGoogle Scholar
  8. 8.
    ter Heegde, F., De Rijk, R.H., Vinkers, C.H.: The brain mineralocorticoid receptor and stress resilience. Psychoneuroendocrinology 52(1), 92–110 (2015).  https://doi.org/10.1016/j.psyneuen.2014.10.022 CrossRefGoogle Scholar
  9. 9.
    Curtis, D.: Binaural beats , brain wave entrainment and the hemi-sync process. In: The Importance of the Different Brain Wave States. Ph.D. thesis, The University of Adelaide (2007)Google Scholar
  10. 10.
    Lane, J.D., Kasian, S.J., Owens, J.E., Marsh, G.R.: Binaural auditory beats affect vigilance performance and mood. Physiol. Behav. 63(2), 249–52 (1998)CrossRefGoogle Scholar
  11. 11.
    Moya-albiol, L., Serrano, M.Á., González-bono, E., Rodríguez-alarcón, G., Salvador, A.: Respuesta psicofisiológica de estrés en una jornada laboral. Psicothema 17(2), 205–211 (2005)Google Scholar
  12. 12.
    Lang, P., Bradley, M., Cuthbert, B.: International affective picture system (IAPS): affective ratings of pictures and instruction manual. In: Technical Report A-8 (2008)Google Scholar
  13. 13.
    Herrera Quintero, L.F.: Viviendas inteligentes ( Domótica ). Rev. Ing. Investig. 25(2), 47–53 (2005)Google Scholar
  14. 14.
    Kaasinen, E., Kymäläinen, T., Niemelä, M., Olsson, T., Kanerva, M., Ikonen, V.: A user-centric view of intelligent environments: user expectations, user experience and user role in building intelligent environments. Computers 2(1), 1–33 (2012).  https://doi.org/10.3390/computers2010001 CrossRefGoogle Scholar
  15. 15.
    Expansion. México está en los primeros lugares a nivel mundial en estrés laboral. Expansion (2018). Available at: https://expansion.mx/carrera/2018/04/13/los-trabajadores-mexicanos-son-de-los-que-mas-sufren-estres-a-nivel-mundial. Accessed 8 July 2018
  16. 16.
    Forbes. Mexicanos, los más estresados del mundo por su trabajo. (2017). Available at: https://www.forbes.com.mx/mexicanos-los-mas-estresados-del-mundo-por-su-trabajo/. Accessed 7 July 2018
  17. 17.
    Ekman, P.: Emotions Revealed, 2nd edn. Henry Holt and Company, LNC, New York (2007)Google Scholar
  18. 18.
    Ekman, P., Rosenberg, E.: What the Face Reveals, 2nd edn. Oxford University Press, Oxford (1997)Google Scholar
  19. 19.
    Lago, P., Guarín, C.J.: An affective inference model based on facial expression analysis. IEEE Lat. Am. Trans. 12(3), 423–429 (2014)CrossRefGoogle Scholar
  20. 20.
    Sita, I.V.: Train comfort, access and security using KNX and LOGO! controllers. In: Electrical Systems for Aircraft, Railway and Ship Propulsion, ESARS (2012).  https://doi.org/10.1109/ESARS.2012.6387411
  21. 21.
    Vanus, J., Cerny, M., Koziorek, J.: The proposal of the smart home care solution with KNX components. In: 2015 38th International Conference on Telecommunications and Signal Processing (TSP), pp. 1–5. IEEE, Piscataway (2015).  https://doi.org/10.1109/TSP.2015.7296410
  22. 22.
    Martirano, L., Marrocco, R., Liberati, F., Di Giorgio, A.: KNX protocol compliant load shifting and storage control in residential buildings. In: Industry Applications Society Annual Meeting, pp. 1–6. IEEE, Piscataway (2015)Google Scholar
  23. 23.
    Lopez-Aguilar, A.A., Navarro-Tuch, S.A., Bustamante-Bello, M.R., Izquierdo-Reyes, J., Curiel-Ramirez, L.A.: Interpretation and emulation for telegrams of the KNX standard on MATLAB simulink. In: 2018 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE), vol. 1. Conference Publishing Services CPS, Cuernavaca (2018).  https://doi.org/10.1109/ICMEAE.2018.00031
  24. 24.
    Lin, C.T., Lin, B.S., Lin, F.C., Chang, C.J.: Brain computer interface-based smart living environmental auto-adjustment control system in UPnP home networking. IEEE Syst. J. 8(2), 363–370 (2014).  https://doi.org/10.1109/JSYST.2012.2192756 CrossRefGoogle Scholar
  25. 25.
    Ou, C.Z., Lin, B.S., Chang, C.J., Lin, C.T.: Brain computer interface-based smart environmental control system. In: Proceedings of the 2012 8th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP, pp. 281–284 (2012).  https://doi.org/10.1109/IIH-MSP.2012.74
  26. 26.
    Sanz-Moreno, C., Lutfi, S., Barra-Chicote, R., Lucas-Cuesta, J., Montero, J. M.: Desarrollo de un asistente domótico emocional inteligente. In: XIX Jornadas Telecom I+D, pp. 1–5 (2009)Google Scholar
  27. 27.
    Ekman, P., Friesen, W.V., Hager, J.C.: Facial Action Coding System, vol. 1. Research Nexus Division of Network Information Research Coorporation, Salt Lake City (2002)Google Scholar
  28. 28.
    Magdy Hassan, H., Hassan Galal-Edeen, G.: From usability to user experience. In: Intelligent Informatics and Biomedical Sciences (ICIIBMS), pp. 216–222 (2017).  https://doi.org/10.1109/ICIIBMS.2017.8279761
  29. 29.
    International Organisation for Standardisation (ISO). Ergonomics of human-system interaction - Part 11: Usability: Definitions and Concepts. ISO 9241-11:2018(E) 2 (2018). Available at: https://infostore.saiglobal.com/en-us/Standards/preview-870000_SAIG_NSAI_NSAI_2619542/
  30. 30.
    Kraft, C.: User Experience Innovation. Apress, Berkeley (2012).  https://doi.org/10.1007/978-1-4302-4150-8 CrossRefGoogle Scholar
  31. 31.
    Law, E.L.C., Roto, V., Hassenzahl, M., Vermeeren, A.P., Kort, J.: Understanding, scoping and defining user experience. In: Proceedings of the 27th International Conference on Human Factors in Computing Systems - CHI 09, vol. 23, p. 719. ACM Press, New York (2009).  https://doi.org/10.1145/1518701.1518813
  32. 32.
    Marcus, A.: Cross-cultural user-experience design. In: Barker-Plummer, D., Cox, R., Swoboda, N. (eds.) Diagrammatic Representation and Inference. Diagrams 2006. Lecture Notes in Computer Science, vol. 4045, chap. 4, pp. 16–24. Springer, Berlin (2006).  https://doi.org/10.1007/11783183_4 CrossRefGoogle Scholar
  33. 33.
    Khowaja, S.A., Dahri, K.: Facial expression recognition using two-tier classification and its application to smart home automation system. In: International Conference on Emerging Technologies (ICET), pp. 4–9 (2015).  https://doi.org/10.1109/ICET.2015.7389223
  34. 34.
    Jiang, B., Valstar, M.F., Pantic, M.: Action unit detection using sparse appearance descriptors in space-time video volumes. Face Gesture 2011, 314–321 (2011).  https://doi.org/10.1109/FG.2011.5771416 CrossRefGoogle Scholar
  35. 35.
    J. D. Power. Face Emotions and Short Surveys during Automotive Tasks. in 2016 Council of American Survey Research Organizations (CASRO) 11 (J.D. Power, 2016). Available at: https://www.jdpower.com/sites/default/files/faceemotions_wp_042616.pdf
  36. 36.
    Barmaki, R.: Gesture assessment of teachers in an immersive rehearsal environment. Ph.D. thesis, University of Central Florida Electronic (2016)Google Scholar
  37. 37.
    Flores-Ragoitia, J.M., Izquierdo-Reyes, J., Pons-Rovira, J.L., Bustamante-Bello, M.R.: Design, development and evaluation of an experimental protocol to user acceptance of WRs. In: Converging Clinical & Engineering Research on NR, vol. 1, pp. 405–409. Springer, Berlin (2019).  https://doi.org/10.1007/978-3-030-01845-0_81 Google Scholar
  38. 38.
    Avila-Vázquez, R., Navarro-Tuch, S., Bustamante-Bello, R., Mendoza, R.A.R., Izquierdo-Reyes, J.: Music recommendation system for human attention modulation by facial recognition on a driving task: a proof of concept. In: Figueira, M., Montemanni, R., Lodewijks, G., Rześny, J. (eds.) MATEC Web of Conferences ICTTE 2017, vol. 124, p. 04013. Hong Kong (2017).  https://doi.org/10.1051/matecconf/201712404013 CrossRefGoogle Scholar
  39. 39.
    Izquierdo-Reyes, J., Ramirez-Mendoza, R.A., Bustamante-Bello, M.R., Navarro-Tuch, S., Avila-Vazquez, R.: Advanced driver monitoring for assistance system (ADMAS): based on emotions. Int. J. Interact. Des. Manuf. 12(September), 1–11 (2016).  https://doi.org/10.1007/s12008-016-0349-9 CrossRefGoogle Scholar
  40. 40.
    Lee, W.S., Hong, S.H.: KNX-zigbee gateway for home automation. In: 4th IEEE Conference on Automation Science and Engineering, CASE, pp. 750–755 (2008).  https://doi.org/10.1109/COASE.2008.4626433
  41. 41.
    Woo, S.L., Seung, H.H.: Implementation of a KNX-ZigBee gateway for home automation. In: Digest of Technical Papers-IEEE International Conference on Consumer Electronics, pp. 545–549 (2009).  https://doi.org/10.1109/ISCE.2009.5156866
  42. 42.
    Ning, H.N.H., Ya-Hu, W.Y.H.W., Yi, T.Y.T.: Research of KNX device node and development based on the bus interface module. In: Control Conference (CCC), 29th Chinese, pp. 4346–4350 (2010)Google Scholar
  43. 43.
    Bujdei, C., Moraru, S.A.: Ensuring comfort in office buildings: designing a KNX monitoring and control system. In: Proceedings-2011 7th International Conference on Intelligent Environments, IE, pp. 222–229 (2011).  https://doi.org/10.1109/IE.2011.29
  44. 44.
    International Organisation for Standardisation (ISO). Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. 52 (2005). Available at: https://www.iso.org/standard/39155.html
  45. 45.
    Zamora-Izquierdo, M.A., Santa, J., Gómez-Skarmeta, A.F.: An integral and networked home automation solution for indoor ambient intelligence. IEEE Pervasive Comput. 9(4), 66–77 (2010).  https://doi.org/10.1109/MPRV.2010.20 CrossRefGoogle Scholar
  46. 46.
    Lozano Alarcon, J. NORMA Oficial Mexicana, Secretaría del Trabajo y Previsión Social, Condiciones de iluminación en los centros de trabajo, NOM-025-STPS-2008. 1, 17–19 (2008)Google Scholar
  47. 47.
    Aguayo González, R.: The lining of the energy space (El revestimiento del espacio energético). Ph.D. thesis, Polytechnic University of Catalonia (1999)Google Scholar
  48. 48.
    Sethumadhavan, A.: Designing wearables that users will wear. Ergon. Des.: Q. Hum. Factors Appl. 26(1), 29–29 (2018).  https://doi.org/10.1177/1064804617747254 CrossRefGoogle Scholar
  49. 49.
    Zuo, F., With, P.D.: Real-time embedded face recognition for smart home. IEEE Trans. Consum. Electron. 51(1), 183–190 (2005).  https://doi.org/10.1109/TCE.2005.1405718 CrossRefGoogle Scholar
  50. 50.
    Yuksekkaya, B., Kayalar, A.A., Tosun, M.B., Ozcan, M.K., Alkar, A.Z.: A GSM, internet and speech controlled wireless interactive home automation system. IEEE Trans. Consum. Electron. 52(3), 837–843 (2006).  https://doi.org/10.1109/TCE.2006.1706478 CrossRefGoogle Scholar
  51. 51.
    Anwar Hossain, M., Atrey, P., El Saddik, A.: Smart mirror for ambient home environment. In: 3rd IET International Conference on Intelligent Environments (IE 07), pp. 589–596 (2007).  https://doi.org/10.1049/cp:20070431
  52. 52.
    Movellan, J., Steward, B.M., Fasel, I., Littlewort, G.F., Susskind, J., Denman, K., Whitehill, J.: Facial expression training using feedback from automatic facial expression recognition. Emotient, San Diego, CA (2014)Google Scholar
  53. 53.
    Wang, J.C., Lee, Y.S., Lin, C.H., Siahaan, E., Yang, C.H.: Robust environmental sound recognition with fast noise suppression for home automation. IEEE Trans. Autom. Sci. Eng. 12(4), 1235–1242 (2015).  https://doi.org/10.1109/TASE.2015.2470119 CrossRefGoogle Scholar
  54. 54.
    Alkar, A.Z., Roach, J., Baysal, D.: IP based home automation system. IEEE Trans. Consum. Electron. 56(4), 2201–2207 (2010).  https://doi.org/10.1109/TCE.2010.5681091 CrossRefGoogle Scholar
  55. 55.
    Xiao, L., Cheng, B., Yang, B., Du, R., Yu, W., Guan, X.: A context-aware entrance guard in smart home: an event-driven application based on the human motion and face recognition. In: ICARA 2011-Proceedings of the 5th International Conference on Automation, Robotics and Applications, pp. 184–189 (2011).  https://doi.org/10.1109/ICARA.2011.6144879
  56. 56.
    Du, K., Wang, Z.: The management system with emotional virtual human based on smart home. In: Proceedings-2012 9th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD, pp. 1989–1993 (2012).  https://doi.org/10.1109/FSKD.2012.6233773
  57. 57.
    Teck Boon, L., Mohd Heikal, H., Zarul Fitri, Z., Mohd Azam, O.: Eye 2H: A proposed automated smart home control system for detecting human emotions through facial detection. In: The 5th International Conference on Information and Communication Technology for The Muslim World (ICT4M), pp. 3–6 (2014).  https://doi.org/10.1109/ICT4M.2014.7020652
  58. 58.
    Han, J., Xie, L., Li, D., He, Z.J., Wang, Z.L.: Cognitive emotion model for eldercare robot in smart home. China Commun. 12(4), 32–41 (2015)CrossRefGoogle Scholar
  59. 59.
    Ortiz Garcia Cervigon, V., V. Sokolova, M., Garcia Muñoz, R.M., Fernández Caballero, A.: LED strips for color- and illumination-based emotion regulation at home. In: Ambient Assisted Living. ICT-Based Solutions in Real Life Situations, chap. LED Strips. Springer, Berlin (2015).  https://doi.org/10.1007/7854
  60. 60.
    Acampora, G., Vitiello, A.: Interoperable neuro-fuzzy services for emotion-aware ambient intelligence. Neurocomputing 122, 3–12 (2013).  https://doi.org/10.1016/j.neucom.2013.01.046 CrossRefGoogle Scholar
  61. 61.
    Ismail, L., Zhang, L.: Information Innovation Technology in Smart Cities. Springer, Singapore (2017).  https://doi.org/10.1007/978-981-10-1741-4 CrossRefGoogle Scholar
  62. 62.
    Ismail, L., Masud, M.M., Khan, L.: FSBD: a framework for scheduling of big data mining in cloud computing. In: 2014 IEEE International Congress on Big Data, pp. 514–521. IEEE (2014).  https://doi.org/10.1109/BigData.Congress.2014.81
  63. 63.
    Mcclellan, S., Jimenez, J.A.: Information Innovation Technology in Smart Cities. Springer, Singapore (2018).  https://doi.org/10.1007/978-981-10-1741-4 CrossRefGoogle Scholar
  64. 64.
    Ismail, L., Khan, L.: Implementation and performance evaluation of a scheduling algorithm for divisible load parallel applications in a cloud computing environment. Softw.: Pract. Exp. 45(6), 765–781 (2015).  https://doi.org/10.1002/spe.2258 CrossRefGoogle Scholar
  65. 65.
    Zhou, F., Ji, Y., Jiao, R.J.: Affective and cognitive design for mass personalization: status and prospect. J. Intell. Manuf. 24(5), 1047–1069 (2013).  https://doi.org/10.1007/s10845-012-0673-2 CrossRefGoogle Scholar
  66. 66.
    Zheng, P., Yu, S., Wang, Y., Zhong, R.Y., Xu, X.: User-experience based product development for mass personalization: a case study. Proc. CIRP 63, 2–7 (2017).  https://doi.org/10.1016/j.procir.2017.03.122 CrossRefGoogle Scholar
  67. 67.
    Wang, Y., Ma, H.S., Yang, J.H., Wang, K.S.: Industry 4.0: a way from mass customization to mass personalization production. Adv. Manuf. 5(4), 311–320 (2017).  https://doi.org/10.1007/s40436-017-0204-7 CrossRefGoogle Scholar
  68. 68.
    Yanagisawa, H., Takatsuji, K.: Expectation effect of perceptual experience in sensory modality transitions: modeling with information theory. J. Intell. Manuf. 28(7), 1635–1644 (2017).  https://doi.org/10.1007/s10845-015-1096-7 CrossRefGoogle Scholar
  69. 69.
    Abascal Carranza, C.M.: Norma Oficial Mexicana, condiciones termicas elevadas o abatidas-Condiciones de seguridad e higiene NOM-015-STPS-2001 (2002)Google Scholar
  70. 70.
    Navarro-Tuch, S.A., Bustamante-Bello, M.R., Izquierdo-Reyes, J., Avila-Vazquez, R., Ramirez-Mendoza, R., Jose Luis, P.H., Gutierrez-Martinez, Y.: Emotional domotics: inhabitable home automation system for emotion modulation through facial analysis. In: Bi, Y., Kapoor, S., Bhatia, R. (eds.) Intelligent Systems and Applications, vol. 751, pp. 218–241. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-69266-1_11 CrossRefGoogle Scholar
  71. 71.
    Kuehl, R.O.: Design of Experiments: Statistical Principles of Research Design and Analysis, 2nd edn. Thomson Learning, Mexico City (1999)zbMATHGoogle Scholar
  72. 72.
    Montgomery, D.C.: Design and Analysis of Experiments, vol. 2, 8th edn. Wiley, Hoboken (2012).  https://doi.org/10.1198/tech.2006.s372 CrossRefGoogle Scholar
  73. 73.
    Donato, G., Bartlett, M.S., Hager, J.C., Ekman, P., Sejnowski, T.J.: Classifying facial actions. IEEE Trans. Pattern Anal. Mach. Intell. 21(10), 974 (1999).  https://doi.org/10.1109/34.799905 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Escuela de Ingenieria y Ciencias, Centro de Investigación en Microsistemas y BiodiseñoTec de Monterrey Campus Ciudad de MéxicoMexico CityMexico
  2. 2.Tec de MonterreyMonterreyMexico

Personalised recommendations