Skip to main content
Log in

Design for Six Sigma (DFSS) for additive manufacturing applied to an innovative multifunctional fan

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

In an increasing number of aggressive enterprise world, “time to market” concerning products has come to be a solution element because of enterprise success. There are exceptional techniques so expect layout mistakes or open products concerning the need between much less time. Among the most used methodologies in the design and setting about stability the requirements, Quality Function Deployment (QFD) and Design for Six Sigma (DFSS) execute remain used. In the prototyping phase, such is feasible in imitation of tackle the rising science regarding additive manufacturing. Today, three-dimensional stamping is in the meanwhile used as a rapid prototyping technique. However, the actual challenge that enterprise is going through is the use of these machineries for large-scale production about parts, at last viable along current HP Multi fusion. The aim of this article is to study the interactive design and engineering applied to the entire product development process taking advantage of the most modern models and technologies for the final realization of a case study that involves the design and prototyping of an innovative multifunctional fan (Lamp, Aroma Diffuser and fan) through the Multi Jet Fusion of HP. To begin with, issues related to the DFSS, the QFD and their application to identify the fan requirements are explored. Once the requirements have been defined, the modern CAD design systems and the CAE systems for the validation of the case study will be analyzed and applied. Finally, HP’s Multi Jet Fusion methodology and design rules for additive manufacturing will be analyzed in detail, trying to exploit all the positive aspects it offers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Freddi, A.: Imparare a progettare, Principi e metodi del progetto concettuale per lo sviluppo della creatività industriale. Pitagora, ISBN 88-371-1512-1 (2005)

  2. Gibson, I., Rosen, D.W., Stucker, B.: Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, p. 459. Springer, New York (2010)

    Book  Google Scholar 

  3. Schilling, M.A.: Strategic Management of Technological Innovation, p. 629. McGraw-Hill Education, Bologna (2010)

    Google Scholar 

  4. Grandi, A.: Gestione dei progetti d’innovazione. McGraw-Hill Education, Bologna (2017)

    Google Scholar 

  5. Filippini, R., Ulrich, K.T., Eppinger, S.D.: Progettazione e sviluppo prodotto. McGraw-Hill Education, Bologna (2007)

    Google Scholar 

  6. De Cesari, C., Metodologies of six sigma and DFSS, Academic internship report at the department of industrial engineering, Alma Mater Studiorum University of Bologna, 2018

  7. Vaneker, T.H.J.: The Role of Design for Additive Manufacturing in the Successful Economical Introduction of AM. University of Twente, Enschede (2017)

    Book  Google Scholar 

  8. Baril, C., Yacout, S., Clément, B.: Design for Six Sigma Through Collaborative Multi Objective Optimization. Department of Industrial Engineering, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières. Journal Computers and Industrial Engineering archive 60(1), 43–55 (2011)

    Article  Google Scholar 

  9. Tao, W, Leu, M.C.: Design of lattice structure for additive manufacturing, Conference: 2016 International Symposium on Flexible Automation (ISFA) (2016). https://doi.org/10.1109/ISFA.2016.7790182

  10. Chirone, E., Tornincasa, S.: Disegno Tecnico Industriale 1. Il Capitello, Torino (2011)

    Google Scholar 

  11. Ogawa, S., Piller, F.: Reducing the risks of new product development. In: MIT Sloan Managment Review-Winter’06 (2006)

  12. de Frutos, G.M.: Thesis to Obtain the Master of Science Degree in Materials Engineering. Product Development Process for Additive Manufacturing. Universidad Tecnica de Lisbona

  13. Hp Website: 3D printing. http://www8.hp.com/it/it/printers/3d-printers.html

  14. PA 12: http://www8.hp.com/h20195/v2/GetPDF.aspx/4AA7-0715EEP.pdf

  15. Ghezzo, F., Giannini, G., Cesari, F., Caligiana, G.: Numerical and experimental analysis of the interaction between two notches in carbon fibre laminates. Compos. Sci. Technol. 68, 1057–1072 (2008). https://doi.org/10.1016/j.compscitech.2007.07.023

    Article  Google Scholar 

  16. Caligiana, G., Liverani, A., Francia, D., Frizziero, L., Donnici, G.: Integrating QFD and TRIZ for innovative design. J. Adv. Mech. Des. Syst. Manuf. 11(2), JAMDSM0015 (2017)

    Article  Google Scholar 

  17. Francia, D., Caligiana, G., Liverani, A., Frizziero, L., Donnici, G.: PrinterCAD: a QFD and TRIZ integrated design solution for large size open moulding manufacturing. Int. J. Interact. Des. Manuf. 12(1), 81–94 (2018)

    Article  Google Scholar 

  18. de Amicis, R., Ceruti, A., Francia, D., Frizziero, L., Simoes, B.: Augmented Reality for virtual user manual. Int. J. Interact. Des. Manuf. 12(2), 689–697 (2018)

    Article  Google Scholar 

  19. Frizziero, L., Francia, D., Donnici, G., Liverani, A., Caligiana, G.: Sustainable design of open molds with QFD and TRIZ combination. J. Ind. Prod. Eng. 35(1), 21–31 (2018)

    Google Scholar 

  20. Donnici, G., Frizziero, L., Francia, D., Liverani, A., Caligiana, G.: Increasing innovation of a new transportation means using TRIZ methodology. J. Heat Mass Transf. 15(2), 341–370 (2018)

    Article  Google Scholar 

  21. Donnici, G., Frizziero, L., Francia, D., Liverani, A., Caligiana, G.: Project of inventive ideas through a TRIZ study applied to the analysis of an innovative urban transport means. Int. J. Manuf. Mater. Mech. Eng. 8(4), 1–24 (2018)

    Google Scholar 

  22. Donnici, G., Frizziero, L., Francia, D., Liverani, A., Caligiana, G.: TRIZ method for innovation applied to an hoverboard. Cogent Eng. 5(1), 1–24 (2018)

    Article  Google Scholar 

  23. Briand, R., Fischer, X., Arrijuria, O., Terrasson, G.: Multidisciplinary design process based on virtual prototyping for microsystem design. Virtual Phys. Prototyp. 5(3), 153–162 (2010)

    Article  Google Scholar 

  24. Cagin, S., Fischer, X., Delacourt, E., Bouraba, N., Morin, C., Coutellier, D., Carré, B., Loumé, S.: A new reduced model of scavenging to optimize cylinder design(Article). Simulation 92(6), 507–520 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Frizziero.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liverani, A., Caligiana, G., Frizziero, L. et al. Design for Six Sigma (DFSS) for additive manufacturing applied to an innovative multifunctional fan. Int J Interact Des Manuf 13, 309–330 (2019). https://doi.org/10.1007/s12008-019-00548-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-019-00548-9

Keywords

Navigation