Skip to main content

Advertisement

Log in

Modeling and parametric optimization of FDM 3D printing process using hybrid techniques for enhancing dimensional preciseness

  • Technical Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

In this study, significant process parameters (layer thickness, build orientation, infill density and number of contours) are optimized for enhancing the magnitude/dimensional preciseness of fused deposition modeling (FDM) devise units. Hybrid statistical tools such as response surface methodology–genetic algorithm (RSM–GA), artificial neural network (ANN) and artificial neural network-genetic algorithm (ANN-GA) in MAT LAB 16.0 are utilized for training and optimization. An attempt has been made to build up a mathematical model in order to set up an indirect correlation between various FDM process parameters and magnitude preciseness. Sequentially to verify the different developed models and the optimum process parameters setting validation tests were also performed. The results showed that various hybrid statistical tools such as RSM-GA, ANN and ANN-GA are very adequate tools for FDM process parameter optimization. The minimum percentage variation in length = 0.06409%, width = 0.03961% and thickness = 0.85689% can be obtained by using ANN-GA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yan, X., Gu, P.: A review of rapid prototyping technologies and systems. Comput. Aided Des. 4, 307–316 (1996)

    Article  Google Scholar 

  2. Lee, B.H., Abdullah, J., Khan, Z.A.: Optimization of rapid prototyping parameters for production of flexible ABS object. J. Mater. Process. Technol. 169, 54–61 (2005)

    Article  Google Scholar 

  3. Mohamed, O.A., Masood, S.H., Bhowmik, J.L.: Experimental investigation of time dependent mechanical properties of PC-ABS prototypes processed by FDM additive manufacturing process. Mater. Lett. 193, 58–62 (2017)

    Article  Google Scholar 

  4. Khodaygan, S., Golmohammadi, A.H.: Multi-criteria optimization of the part build orientation (PBO) through a combinedmeta-modeling/NSGAII/TOPSISmethod for additive manufacturing processes. Int. J. Interact. Des. Manuf. 12, 1071–1085 (2017)

    Article  Google Scholar 

  5. Rayegani, F., Onwubolu, G.: Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE). Int. J. Adv. Manuf. Technol. 73, 509–519 (2014)

    Article  Google Scholar 

  6. Nidagundi, V.B., Keshavamurthy, R., Prakash, C.P.S.: Studies on parametric optimization for fused deposition modelling. Process. Materi. Today Proc. 2, 1691–1699 (2015)

    Article  Google Scholar 

  7. Alafaghani, A., Qattawi A., Alrawi B., Guzman, A.: Experimental optimization of fused deposition modelling processing parameters: a design-for-manufacturing approach. In: North American Manufacturing Research Conference, LA, USA, vol. 10, pp. 791–803 (2017)

  8. Mohamed, O.A., Masood, S.H., Bhowmik, J.L.: Mathematical modeling and FDM process parameters optimization using response surface methodology based on Q-optimal design. Appl. Math. Model. 40, 10052–10073 (2016)

    Article  Google Scholar 

  9. Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Improving magnitude preciseness of fused deposition modelling processed part using grey Taguchi method. Mater. Des. 30, 4243–4252 (2009)

    Article  Google Scholar 

  10. Lieneke, T., Denzer, V., Adam, G.A.O., Zimmer, D.: Magnitude tolerances for additive manufacturing: experimental investigation for fused deposition modeling. Procedia CIRP 43, 286–291 (2016)

    Article  Google Scholar 

  11. Sahu, R.K., Mahapatra, S.S., Sood, A.K.: A study on magnitude preciseness of fused deposition modeling (FDM) processed parts using fuzzy logic. J. Manuf. Sci. Prod. 13(3), 183–197 (2013)

    Google Scholar 

  12. Equbal, A., Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Prediction of magnitude preciseness in fused deposition modelling: a fuzzy logic approach. Int. J. Product. Qual. Manag. 7, 22–43 (2011)

    Article  Google Scholar 

  13. Chou, K., Zhang, Y.: A parametric study of part distortion in fused deposition modeling using three magnitude element analysis. J. Eng. Manuf. 222(B), 959–967 (2008)

    Google Scholar 

  14. Mohamed, O.A., Masood, S.H., Bhowmik, J.L.: Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv. Manuf. 3, 42–53 (2015)

    Article  Google Scholar 

  15. Wang, C.C., Lin, T., Hu, S.: Optimizing the rapid prototyping process by integrating the Taguchi method with the Gray relational analysis. Rapid Prototyp. J. 13, 304–315 (2007)

    Article  Google Scholar 

  16. Kim, G.D., Oh, Y.T.: A benchmark study on rapid prototyping processes and machines: quantitative comparisons of mechanical properties, accuracy, roughness, speed, and material cost. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2, 201–215 (2008)

    Article  Google Scholar 

  17. Ordaz-Hernandez, K., Fischer, X., Bennis, F.: Granular modeling for virtual prototyping in interactive design. Virtual Phys. Prototyp. 2(2), 111–126 (2007)

    Article  Google Scholar 

  18. Nadeau, J.P., Fischer, X.: Research in interactive design: virtual, interactive and integrated product design and manufacturing for industrial innovation. Springer, Berlin (2011)

    Google Scholar 

  19. Davorin, Kramar, Djordje, Cica, Branislav, Sredanovic, Janez, Kopa: Design of fuzzy expert system for predicting of surface roughness in high-pressure jet assisted turning using bioinspired algorithms. Artif. Intell. Eng. Des. Anal. Manuf. 30, 96–106 (2016)

    Article  Google Scholar 

  20. Singh, P.K., Jain, S.C., Jain, P.K.: Comparative study of genetic algorithm and simulated annealing for optimal tolerance design formulated with discrete and continuous variables. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 10, 735–758 (2005)

    Article  Google Scholar 

  21. Singh, P.K., Jain, S.C., Jain, P.K.: A genetic algorithm based solution to optimum tolerance synthesis of mechanical assemblies with alternate manufacturing processes—benchmarking with the exhaustive search method using the Lagrange multiplier. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 7, 765–778 (2004)

    Article  Google Scholar 

  22. Rojek, I.: Technological process planning by the use of neural networks. Artif. Intell. Eng. Des. Anal. Manuf. 31, 1–15 (2017)

    Article  Google Scholar 

  23. Christiyan, K.G.J., Chandrasekhar, U., Venkateswarlu, K.: A study on the influence of process parameters on the mechanical properties of 3D printed ABS composite. IOP Conf. Ser. Mater. Sci. Eng. 114, 012109 (2016). https://doi.org/10.1088/1757-899X/114/1/012109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Chhabra.

Additional information

Publisher’s Note

Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deswal, S., Narang, R. & Chhabra, D. Modeling and parametric optimization of FDM 3D printing process using hybrid techniques for enhancing dimensional preciseness. Int J Interact Des Manuf 13, 1197–1214 (2019). https://doi.org/10.1007/s12008-019-00536-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-019-00536-z

Keywords

Navigation