Skip to main content

Surface roughness evaluation in hardened materials by pattern recognition using network theory

Abstract

Performance characteristics of the products made of metallic materials such as wear resistance, fatigue strength, stability of gaps and strain between the connections, corrosion resistance, etc., depend to a large extent by the quality of their surfaces roughness. An interactive control of the manufacturing parameters which influence the surface roughness is particularly crucial in the construction of many mechanical components. The present paper devises a new method for statistical pattern recognition on samples produced by the process of robot laser hardening using network theory and describes its application to the determination of surface roughness. The method is based on the analysis of SEM images. Indeed the data characterizing the state of surface irregularities detected as extremely small segments contain indicators of surface roughness. Different methods of machine learning techniques designed to predict the surface roughness of robot laser hardened material are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Grum, J., Žerovnik, P., Šturm, R.: Measurement and analysis of residual stresses after laser hardening and laser surface melt hardening on flat specimens. In: Proceedings of the conference “Quenching’96”, Ohio, Cleveland (1996)

  2. Zhai, C., Gan, Y., Hanaor, D., Proust, G., Retraint, D.: The role of surface structure in normal contact stiffness. Exp. Mech. 56(3), 359–368 (2016). https://doi.org/10.1007/s11340-015-0107-0

    Article  Google Scholar 

  3. Calì, M., Oliveri, S.M., Sequenzia, G., Fatuzzo, G.: An effective model for the sliding contact forces in a multibody environment. Lecture Notes in Mechanical Engineering. Springer, Cham, pp. 675–685 (2017). www.springer.com/series/11236 https://doi.org/10.1007/978-3-319-45781-9_121

  4. Krulikowski, A.: Fundamentals of Geometric Dimensioning and Tolerancing. Cengage Learning, Boston (2012)

    Google Scholar 

  5. Calì, M., Oliveri S. M., Ambu, R., Fichera, G.: An integrated approach to characterize the dynamic behaviour of a mechanical chain tensioner by functional tolerancing. Strojniški vestnik—J. Mech. Eng. 64(4), 245–257 (2018)

  6. Abouelatta, O.B., Madl, J.: Surface roughness prediction based on cutting parameters and tool vibrations in turning operations. J. Mater. Process. Technol. 118(1–3), 269–277 (2001)

    Article  Google Scholar 

  7. Lai, J., Huang, H., Buising, W.: Effects of microstructure and surface roughness on the fatigue strength of high-strength steels. Procedia Struct. Integr. 2, 1213–1220 (2016)

    Article  Google Scholar 

  8. Wakuda, M., Yamauchi, Y., Kanzaki, S., Yasuda, Y.: Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact. Wear 254(3–4), 356–363 (2003)

    Article  Google Scholar 

  9. Ambu, R., Bertetto, A.M., Mazza, L.: Re-design of a guide bearing for pneumatic actuators and life tests comparison. Tribol. Int. 96, 317–325 (2016)

    Article  Google Scholar 

  10. Petare, A.C., Jain, N.K.: On simultaneous improvement of wear characteristics, surface finish and microgeometry of straight bevel gears by abrasive flow finishing process. Wear 404–405, 38–49 (2018)

    Article  Google Scholar 

  11. Boeing, G.: Visual analysis of nonlinear dynamical systems: chaos, fractals, self-similarity and the limits of prediction. Systems 4(4), 37 (2016). https://doi.org/10.3390/systems4040037

    Article  Google Scholar 

  12. Tai, Y., Yang, J., Luo, L., Zhang, F., Qian, J.: Learning discriminative singular value decomposition representation for face recognition. Pattern Recognit. 50, 1–16 (2016)

    Article  Google Scholar 

  13. Bridge, J.P., Holden, S.B., Paulson, L.C.: Machine learning for first-order theorem proving. J. Autom. Reason. 53(2), 141–172 (2014)

    Article  MATH  Google Scholar 

  14. Grandjean, Martin: A social network analysis of twitter: mapping the digital humanities community. Cogent Arts Human. 3(1), 1171458 (2016). https://doi.org/10.1080/23311983.2016.1171458

    Google Scholar 

  15. Yazdi, M., Hamzeh S.: Knowledge acquisition development in failure diagnosis analysis as an interactive approach. Int. J. Interact. Des. Manuf. (IJIDeM) 1–18 (2018). https://doi.org/10.1007/s12008-018-0504-6

  16. Vergnano, A., Berselli, G., Pellicciari, M.: Interactive simulation-based-training tools for manufacturing systems operators: an industrial case study. Int. J. Interact. Des. Manuf. (IJIDeM) 11(4), 785–797 (2017)

    Article  Google Scholar 

  17. Mukattash, A.M., Tahboub, K.K., Adil, M.B.: Interactive design of cellular manufacturing systems, optimality and flexibility. Int. J. Interact. Des. Manuf. (IJIDeM) 12, 1–8 (2017)

    Google Scholar 

  18. Li, J., Du, Q., Sun, C.: An improved box-counting method for image fractal dimension estimation. Pattern Recogn. 42(11), 2460–2469 (2009)

    Article  MATH  Google Scholar 

  19. Armstrong, J.: Scott: illusions in regression analysis. Int. J. Forecast. 28(3), 689 (2012)

    Article  Google Scholar 

  20. Hansen, J.V., Lowry, P.B., Meservy, R.D., McDonald, D.M.: Genetic programming for prevention of cyberterrorism through dynamic and evolving intrusion detection. Decis. Support Syst. 43(4), 1362–1374 (2007). https://doi.org/10.1016/j.dss.2006.04.004.SSRN877981

    Article  Google Scholar 

  21. Ojha, V.K., Abraham, A., Snášel, V.: Metaheuristic design of feedforward neural networks: a review of two decades of research. Eng. Appl. Artif. Intell. 60, 97–116 (2017). https://doi.org/10.1016/j.engappai.2017.01.013

    Article  Google Scholar 

  22. Wenzel, F., Galy-Fajou, T., Deutsch, M., Kloft, M.: Bayesian nonlinear support vector machines for big data (PDF). Machine learning and knowledge discovery in databases (ECML PKDD). Archived (PDF) from the original on 2017-08-30

  23. Lewoniewski, W., Węcel, K., Abramowicz, W.: Quality and Importance of wikipedia articles in different languages. Information and software technologies. ICIST 2016. Commun. Comput. Inf. Sci. 639, 613–624 (2016). https://doi.org/10.1007/978-3-319-46254-7_50

    Google Scholar 

  24. Malkov, Y., Ponomarenko, A., Krylov, V., Logvinov, A.: Approximate nearest neighbor algorithm based on navigable small world graphs. Inf. Syst. 45, 61–68 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Babič.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Babič, M., Calì, M., Nazarenko, I. et al. Surface roughness evaluation in hardened materials by pattern recognition using network theory. Int J Interact Des Manuf 13, 211–219 (2019). https://doi.org/10.1007/s12008-018-0507-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-018-0507-3

Keywords

  • Surface roughness
  • Machine interactive learning
  • Statistical pattern recognition
  • Robot laser hardening
  • SEM images