Hybrid nano-fluid-minimum quantity lubrication strategy for machining austempered ductile iron (ADI)

  • A. EltaggazEmail author
  • H. Hegab
  • I. Deiab
  • H. A. Kishawy
Original Paper


The use of austempered ductile iron (ADI) is rapidly increasing in many engineering applications such as automotive due to its unique and promising characteristics, for example; high strength to weight ratio, high wear and corrosion resistance, high yield stress, and high toughness. However, other properties such as low thermal conductivity undesirably affects ADI machinability and accelerate cutting tool failure. Additionally, other issues associated with cutting ADI are the high cutting temperature, high pressure and dynamic loads, and tendency of chip to adhere to cutting tool face. To overcome such issues, a proper coolant should be applied. However, flood coolant has sufficient effects in reducing the generated cutting heat, further alternatives are still required to decease its environmental and health impacts. Minimum quantity lubrication (MQL) serves as the best alternative to flood cooling from an environmental perspective as it minimizes the amount of cutting fluid; however, its heat capacity is lower than the traditional flood coolant. To improve the cooling and lubricating efficiency of MQL, aluminum oxide (\(\hbox {Al}_{2}\hbox {O}_{3}\)) gamma nanoparticles are used in this work and its effect on the tool wear behavior during cutting of ADI is investigated. The combination of MQL-nanofluid at cutting speed of 120 m/min and feed rate of 0.2 mm/rev showed the best tool life, while test 3 which has been performed at cutting speed of 240 m/min and feed rate of 0.2 mm/rev using classical MQL provided the worst flank wear value.


Austempered ductile iron (ADI) Minimum quantity lubrication (MQL) Machinability Nano-cutting fluid 



The authors acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and Ontario Centers of Excellence (OCE).


  1. 1.
    Meena, A., El Mansori, M.: Study of dry minimum quantity lubrication drilling of novel austempered ductile iron (ADI) for automotive applications. Wear 271(9–10), 2412–2416 (2011)CrossRefGoogle Scholar
  2. 2.
    Polishetty, A.: Machinability and microstructural studies on phase transformations in Austempered Ductile Iron. Ph.D. thesis, Auckland University of Technology, Auckland (2011)Google Scholar
  3. 3.
    Klocke, F., Klopper, C.: Machining of ADI. WZL Laboratory for Machine Tools and Production Engineering, Aachen, GermanyGoogle Scholar
  4. 4.
    Brandenberg, K.: Successfully Machining Austempered Ductile Iron (ADI). Applied Process Inc., Michgen (2001)Google Scholar
  5. 5.
    Pervaiz, S., Rashid, A., Deiab, I., Nicolescu, C.M.: An experimental investigation on effect of minimum quantity cooling lubrication (MQCL) in machining titanium alloy (Ti–6Al–4V). Int. J. Adv. Manuf. Technol. 87(5–8), 1371–1386 (2016)CrossRefGoogle Scholar
  6. 6.
    Sadeghi, M.H., Haddad, M.J., Tawakoli, T., Emami, M.: Minimal quantity lubrication-MQL in grinding of Ti-6Al-4V titanium alloy. Int. J. Adv. Manuf. Technol. 44(5–6), 487–500 (2009)CrossRefGoogle Scholar
  7. 7.
    Pervaiz, S.: Investigation Cooling and Lubrication Strategies for Sustainable Machining of Titanium Alloys: Impact on Machinability and Environmental Performance. KTH Royal Institute of Technology, Stockholm (2014)Google Scholar
  8. 8.
    Gajrani, K.K., Ram, D., Sankar, M.R.: Biodegradation and hard machining performance comparison of eco-friendly cutting fluid and mineral oil using flood cooling and minimum quantity cutting fluid techniques. J. Clean. Prod. 165, 1420 (2017)CrossRefGoogle Scholar
  9. 9.
    Boswell, B., Islam, M.N., Davies, I.J., Ginting, Y.R., Ong, A.K.: A review identifying the effectiveness of minimum quantity lubrication (MQL) during conventional machining. Int. J. Adv. Manuf. Technol. 92(1–4), 321–340 (2017)CrossRefGoogle Scholar
  10. 10.
    Ramana, M.V., Rao, G.K.M., Rao, D.H.: Optimization and effect of process parameters on tool wear in turning of titanium alloy under different machining conditions. Int. J. Mater. Mech. Manuf. 2(4), 272 (2014)Google Scholar
  11. 11.
    Deiab, I., Raza, S.W., Pervaiz, S.: Analysis of lubrication strategies for sustainable machining during turning of titanium Ti-6Al-4V alloy. Proc. CIRP 17, 766–771 (2014)CrossRefGoogle Scholar
  12. 12.
    Weinert, K., Inasaki, I., Sutherland, J.W., Wakabayashi, T.: Dry machining and minimum quantity lubrication. CIRP Ann. Manuf. Technol. 53(2), 511–537 (2004)CrossRefGoogle Scholar
  13. 13.
    Raza, S.W., Pervaiz, S., Deiab, I.: Tool wear patterns when turning of titanium alloy using sustainable lubrication strategies. Int. J. Precis. Eng. Manuf. 15(9), 1979–1985 (2014)CrossRefGoogle Scholar
  14. 14.
    Revuru, R., Rao Posinasetti, N., Ramana, V., Amrita, M.: Application of cutting fluid in machining of titanium alloys-a review. Int. Adv. Manuf. Technol. 91, 2477–2498 (2017)CrossRefGoogle Scholar
  15. 15.
    Hsieh, S.-S., Liu, H.-H., Yeh, Y.-F.: Nanofluids spray heat transfer enhancement. Int. J. Heat Mass Transfer 94, 104–118 (2016)CrossRefGoogle Scholar
  16. 16.
    Setti, D., Sinha, M.K., Ghosh, S., Rao, P.V.: Performance evaluation of Ti-6Al-4V grinding using chip formation and coefficient of friction under the influence of nanofluids. Int. J. Mach. Tools Manuf. 88, 237–248 (2015)CrossRefGoogle Scholar
  17. 17.
    Srikant, R.R., Rao, D.N., Subrahmanyam, M.S., Krishna, V.P.: Applicability of cutting fluids with nanoparticle inclusion as coolants in machining. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 223(2), 221–225 (2009)CrossRefGoogle Scholar
  18. 18.
    Zhang, Y., Li, C., Jia, D., Zhang, D., Zhang, X.: Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil. J. Clean. Prod. 87, 930–940 (2015)CrossRefGoogle Scholar
  19. 19.
    Alberts, M., Kalaitzidou, K., Melkote, S.: An investigation of graphite nanoplatelets as lubricant in grinding. Int. J. Mach. Tools Manuf. 49(12), 966–970 (2009)CrossRefGoogle Scholar
  20. 20.
    Kishawy, H., Li, L., El-Wahab, A.: Prediction of chip flow direction during machining with self-propelled rotary tools. Int. J. Mach. Tools Manuf. 46(12), 1680–1688 (2006)CrossRefGoogle Scholar
  21. 21.
    Kishawy, H.A.: An experimental evaluation of cutting temperatures during high speed machining of hardened D2 tool steel. 6(1), 67–79 (2002). CrossRefGoogle Scholar
  22. 22.
    Hegab, H.A., Darras, B., Kishawy, H.A.: Towards sustainability assessment of machining processes. J. Clean. Prod. 170, 694–703 (2018)CrossRefGoogle Scholar
  23. 23.
    Uhart, M., Patrouix, O., Aoustin, Y.: Improving manufacturing of aeronautical parts with an enhanced industrial robotised fibre placement cell using an external force-vision scheme. Int. J. Interact. Des. Manuf. 10(1), 15–35 (2016)CrossRefGoogle Scholar
  24. 24.
    Vergnano, A., Berselli, G., Pellicciari, M.: Interactive simulation-based-training tools for manufacturing systems operators: an industrial case study. Int. J. Interact. Des. Manuf. 11(4), 785–797 (2017)CrossRefGoogle Scholar
  25. 25.
    Goyal, T., Walia, R.S., Sidhu, T.S.: Taguchi and utility based concept for determining optimal process parameters of cold sprayed coatings for multiple responses. Int. J. Interact. Des. Manuf. 11(4), 761–769 (2017)CrossRefGoogle Scholar
  26. 26.
    Hwang, Y., Park, H.S., Lee, J.K., Jung, W.H.: Thermal conductivity and lubrication characteristics of nanofluids. Curr. Appl. Phys. 6, e67–e71 (2006)CrossRefGoogle Scholar
  27. 27.
    Li, X.F., Zhu, D.S., Wang, X.J., Wang, N., Gao, J.W., Li, H.: Thermal conductivity enhancement dependent pH and chemical surfactant for \(\text{ Cu-H }_{2}\text{ O }\) nanofluids. Thermochim. Acta 469(1–2), 98–103 (2008)CrossRefGoogle Scholar
  28. 28.
    Zhu, H., Zhang, C., Tang, Y., Wang, J., Ren, B., Yin, Y.: Preparation and thermal conductivity of suspensions of graphite nanoparticles. Carbon 45(1), 226–228 (2007)CrossRefGoogle Scholar
  29. 29.
    Mehta, S., Chauhan, K.P., Kanagaraj, S.: Modeling of thermal conductivity of nanofluids by modifying Maxwell’s equation using cell model approach. J. Nanoparticle Res. 13(7), 2791–2798 (2011)CrossRefGoogle Scholar
  30. 30.
    Loos, M.: Carbon Nanotube Reinforced Composites: CNT Polymer Science and Technology. Elsevier, London (2014)Google Scholar
  31. 31.
    Hegab, H., Umer, U., Soliman, M., Kishawy, H.A.: Effects of nano-cutting fluids on tool performance and chip morphology during machining Inconel 718. Int. J. Adv. Manuf. Technol. 96(9), 3449–3458 (2018)CrossRefGoogle Scholar
  32. 32.
    Hegab, H., Umer, U., Deiab, I., Kishawy, H.: Performance evaluation of Ti–6Al–4V machining using nano-cutting fluids under minimum quantity lubrication. Int. J. Adv. Manuf. Technol. 95(9), 4229–4241 (2018)CrossRefGoogle Scholar
  33. 33.
    Mao, C., Zhang, J., Huang, Y., Zou, H., Huang, X., Zhou, Z.: Investigation on the effect of nanofluid parameters on MQL grinding. Mater. Manuf. Process. 28(4), 436–442 (2013)CrossRefGoogle Scholar
  34. 34.
    Eltaggaz, A., Hegab, H., Deiab, I., Kishawy, H.: On using nano-cutting fluid when machining austempered ductile iron (ADI). In: Presented at the 26th Canadian Congress of Applied Mechnaics, Victoria, Canada (2017, May)Google Scholar
  35. 35.
    Khandekar, S., Sankar, M.R., Agnihotri, V., Ramkumar, J.: Nano-cutting fluid for enhancement of metal cutting performance. Mater. Manuf. Process. 27(9), 963–967 (2012)CrossRefGoogle Scholar
  36. 36.
    Sharma, A.K., Tiwari, A.K., Dixit, A.R.: Progress of nanofluid application in machining: a review. Mater. Manuf. Process. 30(7), 813–828 (2015)CrossRefGoogle Scholar
  37. 37.
    Rajmohan, T., Sathishkumar, S., Palanikumar, K.: Effect of a nanoparticle-filled lubricant in turning of AISI 316L stainless steel (SS). Part. Sci. Technol. 35(2), 201–208 (2017)CrossRefGoogle Scholar
  38. 38.
    Singh, R.K., Sharma, A.K., Dixit, A.R., Tiwari, A.K., Pramanik, A., Mandal, A.: Performance evaluation of alumina-graphene hybrid nano-cutting fluid in hard turning. J. Clean. Prod. 162, 830–845 (2017)CrossRefGoogle Scholar
  39. 39.
    Bakalova, T., Svobodová, L., Rosická, P.: Borůvková, K., Voleský, L., Louda, P.: The application potential of \(\text{ SiO }_{2}\), \(\text{ TiO }_{2}\) or Ag nanoparticles as fillers in machining process fluids. J. Cean Prod. 142, 2237–2243 (2017)CrossRefGoogle Scholar
  40. 40.
    Eltaggaz, A., Zawada, P., Hegab, H.A., Deiab, I., Kishawy, H.A.: Coolant strategy influence on tool life and surface roughness when machining ADI. Int. J. Adv. Manuf. Technol. 94(9–12), 3875–3887 (2018)CrossRefGoogle Scholar
  41. 41.
    Liu, G., Li, C., Zhang, Y., Yang, M., Jia, D., Zhang, X., Zhai, H.: Process parameter optimization and experimental evaluation for nanofluid MQL in grinding Ti-6Al-4V based on grey relational analysis. Mater. Manuf. Process. 33, 1–14 (2017)Google Scholar
  42. 42.
    Kandile, N.G., Harding, D.R.: Nanotechnology and performance development of cutting fluids. Surfactants Tribol. 2017, 5 (2017)Google Scholar
  43. 43.
    Lee, K., Hwang, Y., Cheong, S., Choi, Y., Kwon, L., Lee, J., Kim, S.H.: Understanding the role of nanoparticles in nano-oil lubrication. Tribol. Lett. 35(2), 127–131 (2009)CrossRefGoogle Scholar
  44. 44.
    Paul, S., Singh, A.K., Ghosh, A.: Grinding of Ti-6Al-4V under small quantity cooling lubrication environment using alumina and MWCNT nanofluids. Mater. Manuf. Process. 32(6), 608–615 (2017)CrossRefGoogle Scholar
  45. 45.
    Hegab, H., Kishawy, H.A, Gadallah, M.H., Umer, U., Deiab, I.: On machining of Ti–6Al–4V using multi-walled carbon nanotubes-based nano-fluid under minimum quantity lubrication. Int. J. Adv. Manuf. Technol. (2018). CrossRefGoogle Scholar
  46. 46.
    Haglund, A.J., Kishawy, H.A., Rogers, R.J.: An exploration of friction models for the chip-tool interface using an arbitrary Lagrangian-Eulerian finite element model. Wear 265(3–4), 452–460 (2008)CrossRefGoogle Scholar
  47. 47.
    El-Wardany, T.I., Kishawy, H.A., Elbestawi, M.A.: Surface integrity of die material in high speed hard machining, part 1: micrographical analysis. J. Manuf. Sci. Eng. 122(4), 620–631 (2000)CrossRefGoogle Scholar
  48. 48.
    El-Wardany, T.I., Kishawy, H.A., Elbestawi, M.A.: Surface integrity of die material in high speed hard machining, part 2: microhardness variations and residual stresses. J. Manuf. Sci. Eng. 122(4), 632–641 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • A. Eltaggaz
    • 1
    Email author
  • H. Hegab
    • 2
  • I. Deiab
    • 1
  • H. A. Kishawy
    • 2
  1. 1.Advanced Manufacturing LaboratoryUniversity of GuelphGuelphCanada
  2. 2.Machining Research LaboratoryUniversity of Ontario Institute of TechnologyOshawaCanada

Personalised recommendations