Advertisement

Effect of hybrid wire EDM conditions on generation of residual stresses in machining of HCHCr D2 tool steel under ultrasonic vibration

  • Sanjay Kumar
  • Sandeep Grover
  • R. S. Walia
Original Paper
  • 139 Downloads

Abstract

This experimental examination exhibit a novel Hybrid Wire electrical discharge machining (H-WEDM) process of ultrasonic vibration combined with traditional Wire-EDM. The metal cutting for form tool and extrusion die with WEDM is liked to give better surface morphology. The effect of residual stresses has been dissected for H-WEDMed machined surface alongside the surface roughness and erosion rate to enhance surface integrity and longer service life of High Carbon High Chromium D2 tool steel. The process parameters chose for this investigation are type of vibration continuous/discontinues, amplitude of vibration, workpiece dimension, duty cycle, peek current and wire feed rate with objective to optimize the residual stresses and erosion rate. Portable X-ray Residual Stress Analyzer, a non-destructive X-ray analyzer is used to measure the residual stress efficiently by detecting the full Debye ring data from a single incident X-ray angle and Non goniometer stage influence on the measurements. An endeavor was made to compare the residual stresses for continuous/discontinues vibration and without vibration. The impacts of amplitude of vibration, peak current, duty cycle and wire feed rate variations on erosion rate was study using Taguchi method. From experimental study, it was observed that discontinuous vibration enhances the erosion rate and diminishes the resultant stresses. High Peak current and duty cycle altogether deteriorate the surface texture, which creates high tensile residual stresses because of debris and micro cracks. The optimum value of residual stresses 86.53 MPa and material erosion rate 6.45 mm/min was achieved using H-WEDM.

Keywords

Ultrasonic vibration Wire EDM Residual stress Debey ring Duty cycle Peak current X-ray 

Notes

Acknowledgements

The authors acknowledge Department Mechanical Engineering, YMCA UST Faridabad, India, for providing the necessary wire electric discharge machine tool with additional set-up for experimentation. The authors are also thankful to Department of Mechanical and Production, DTU Delhi, India, for providing stress analyzer facility.

References

  1. 1.
    Antar, M.T., Soo, S.L., Aspinwall, D.K., Sage, C., Cuttell, M., Perez, R., et al.: Fatigue response of Udimet 720 following minimum damage wire electrical discharge machining. Mater. Des. 42, 295–300 (2012)CrossRefGoogle Scholar
  2. 2.
    Ashyralyev, A.: Nonlocal boundary-value problems for elliptic equations: well-posedness in bochner spaces. AIP Conf. Proc. 1309, 66–84 (2010)CrossRefGoogle Scholar
  3. 3.
    Capello, E.: Residual stresses in turning: part I: influence of process parameters. J. Mater. Process. Technol. 160(2), 221–228 (2004)CrossRefGoogle Scholar
  4. 4.
    Ekmekci, B., Elkoca, O., Tekkaya, A.E., Erden, A.: Residual stress state and hardness depth in electrical discharge machining: de-ionizaed water as dielectric liquid. Mach. Sci. Technol. 9, 39–61 (2007)CrossRefGoogle Scholar
  5. 5.
    Fischer, X., Coutellier, D.: Research in Interactive Design. Springer, Paris (2007)Google Scholar
  6. 6.
    Ghanem, F., Fredj, N.B., Sidhom, H., Braham, C.: Effects of finishing processes on the fatigue life improvements of electro machined surfaces of tool steel. Int. J. Adv. Manuf. Technol. 52, 583–595 (2011)CrossRefGoogle Scholar
  7. 7.
    Guo, Z.N., Lee, T.C., Yue, T.M., Lau, W.S.: A study of ultrasonic-aided wire electrical discharge machining. J. Mater. Process. Technol. 63, 823–828 (1997)CrossRefGoogle Scholar
  8. 8.
    Guo, Z.N., Lee, T.C., Yue, T.M., Lau, W.S.: Study on the machining mechanism of WEDM with ultrasonic vibration of the wire. J. Mater. Process. Technol. 69, 212–221 (1997)CrossRefGoogle Scholar
  9. 9.
    Guu, Y.H., Chou, Y.C., Chiou, S.-T.: Study of the effect of machining parameters on the machining characteristics in electrical discharge machining of Fe–Mn–Al alloy. Mater. Manuf. Process. 20(6), 905–916 (2004)CrossRefGoogle Scholar
  10. 10.
    Han, G., Soo, S.L., Aspinwall, D.K., Bhaduri, D.: Research on the ultrasonic assisted WEDM of Ti–6Al–4V. Adv. Mater. Res. 797, 315–319 (2013)CrossRefGoogle Scholar
  11. 11.
    Ho, K.H., Newman, S.T.: State of the art electrical discharge machining (EDM). Int. J. Mach. Tools Manf. 43, 1287–1300 (2003)CrossRefGoogle Scholar
  12. 12.
    Kansal, H.K., Singh, S., Kumar, P.: Parametric optimization of powder mixed electrical ischarge machining by response surface methodology. J. Mater. Process. Technol. 169(3), 427–436 (2005)CrossRefGoogle Scholar
  13. 13.
    Khosrozadeh, B., Shabgard, M.: Effects of hybrid electrical discharge machining processes on surface integrity and residual stresses of Ti–6Al–4V titanium alloy. Int. J. Adv. Manuf. Technol. 93, 1999–2011 (2017)CrossRefGoogle Scholar
  14. 14.
    Klinka, A., Guo, Y.B., Klockea, F.: Surface integrity evolution of powder metallurgical tool steel by main cut and finishing trim cuts in wire-EDM. Procedia Eng. 19, 178–183 (2011)CrossRefGoogle Scholar
  15. 15.
    Kremer, D., Lebrun, J.L., Hosari, B., Moisan, A.: Effects of ultrasonic vibrations on the performances in EDM. Ann. ClRP 38(1), 199–202 (1989)CrossRefGoogle Scholar
  16. 16.
    Kumar, s, Grover, S., Walia, R.S.: Optimisation strategies in ultrasonic vibration assistedelectrical discharge machining: a review. Int. J. Precis. Technol. 7(1), 51–84 (2017)CrossRefGoogle Scholar
  17. 17.
    Liu, J.F., Guo, Y.B.: Residual stress modeling in electric discharge machining (EDM) by incorporating massive random discharges. Procedia CIRP 45, 299–302 (2016)CrossRefGoogle Scholar
  18. 18.
    Peterson, N., Kobayashi, Y., Traeger, B., Sanders, P.: Assessment and validation of Cos? Method for residual stress measurement. In: 13th International Conference on Shot Peening, pp. 80–86 (2017)Google Scholar
  19. 19.
    Ramakrishnana, R., Karunamoorthy, L.: Modeling and multi-response optimization of Inconel 718 on machining of CNC WEDM process. J. Mater. Process. Technol. 207, 343–349 (2008)CrossRefGoogle Scholar
  20. 20.
    Rao, P.S., Ramji, K., Satyanarayana, B.: Effect of wire EDM conditions on generation of residual stresses in machining of aluminum 2014 T6 alloy. Alex. Eng. J. 55, 1077–1085 (2016)CrossRefGoogle Scholar
  21. 21.
    Ross, P.J.: Taguchi Techniques for Quality Engineering. McGraw-Hills Book Company, New York (1988)Google Scholar
  22. 22.
    Roy, R.K.: A Primer on Taguchi Method. Van Nostrand Reinhold, New York (1990)zbMATHGoogle Scholar
  23. 23.
    Sasaki, T., Miyazaki, T., Ito, H., Furukawa, T., Mihara, T.: X-ray residual stress analysis of nickel base alloys. Adv. Mater. Res. 922, 274–279 (2014)CrossRefGoogle Scholar
  24. 24.
    Shabgard, M.R., Alenabi, H.: Ultrasonic assisted electrical discharge machining of Ti–6Al–4V alloy. Mater. Manuf. Process. 30, 991–1000 (2015)CrossRefGoogle Scholar
  25. 25.
    Sidhom, H., Ghanem, F., Amadou, T., Gonzalez, G., Braham, C.: Effect of electro discharge machining (EDM) on the AISI316L SS white layer micro structureand corrosion resistance. Int. J. Adv. Manuf. Technol. 65, 141–153 (2013)CrossRefGoogle Scholar
  26. 26.
    Singh, J., Walia, R.S., Satsangi, P.S., Singh, V.P.: FEM modeling of ultrasonic vibration assisted workpiece in EDM process. Int. J. Mech. Syst. Eng. 1(1), 8–16 (2012)Google Scholar
  27. 27.
    Singh, J., Walia, R.S., Satsangi, P.S., Singh, V.P.: Hybrid electric discharge machining process with continuous and discontinuous ultrasonic vibrations on workpiece. Int. J. Mech. Syst. Eng. 2(1), 22–33 (2012)Google Scholar
  28. 28.
    Soo, S.L., Antar, M.T., Aspinwall, D.K., Sage, C., Cuttell, M., Perez, R., et al.: The effect of wire electrical discharge machining on the fatigue life of Ti–6Al–2Sn–4Zr–6Mo aerospace alloy. Procedia CIRP 6, 215–219 (2013)CrossRefGoogle Scholar
  29. 29.
    Srivastava, V., Pandey, P.M.: Effect of process parameters on the performance of EDM process with ultrasonic assisted cryogenically cooled electrode. J. Manuf. Process. 14, 393–402 (2012)CrossRefGoogle Scholar
  30. 30.
    Walia, R.S., Shan, H.S., Kumar, P.: Improving EDM process efficiency by ultrasonic vibrations. J. Pure Appl. Ultrason. 26(2/3), 84–89 (2004)Google Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringYMCA University of Science and TechnologyFaridabadIndia
  2. 2.Department of Mechanical, Production and Industrial and AutomationDelhi Technological UniversityDelhiIndia

Personalised recommendations