Unique transfer of functional requirements into manufacturing dimensions in an interactive design context

  • Maroua Ghali
  • Mehdi Tlija
  • Eric Pairel
  • Nizar Aifaoui
Original Paper


Tolerance allocation and transfer are two important engineering tasks. In fact, the assembly quality improvement and tolerances cost reduction are relied on optimal transfer and tolerance allocation while respecting the functions depend and manufacturing requirements. The traditional approaches reduce the tolerance values during the transfer of the design dimension on the manufacturing dimensions and expand the tolerance manufacturing cost as well. However, these approaches are unsuitable for a concurrent engineering context. This paper proposes a unique transfer approach of mechanism–dimension from the functional requirements to the manufacturing dimensions of parts. The traditional approaches for the transfer of mechanisms–dimensions in parts-dimensions are firstly presented. Then, a case study of the manufacturing dimensions specification based on Bourdet and Wade is detailed. The obtained results lead to avoid the tolerance reduction generated by the double dimensions transfer of traditional industrial approaches. A comparative study of allocated tolerances of manufacturing dimensions is presented for each approach. Therefore, the compared approaches classification is performed according to various criteria as the number of manufacturing dimensions, the values of the allocated tolerance and the calculated total cost based on the tolerances’ manufacturing cost and quality loss. In addition, the proposed method based on the unique transfer promotes the field of interactive engineering. In fact, the unique transfer requires the collaborative work and interactive exchange of expertise between different actors of the product development cycle.


Dimension transfer Tolerance allocation Manufacturing process Bourdet method Wade method Unique method 



Functional requirement


Part dimension


Manufacturing dimension

\(\hbox {MD}^{\mathrm{B}}\):

Manufacturing dimension using Bourdet method

\(\hbox {MD}^{\mathrm{W}}\):

Manufacturing dimension using Wade method


Traditional Bourdet method


Traditional Wade method


Unique Bourdet method


Unique Wade method


Worst case

\(\hbox {C}_{\mathrm{m}}\):

Manufacturing cost


Quality loss

\(\hbox {C}_{\mathrm{Tm}}\):

Total manufacturing cost

\(\hbox {C}_{\mathrm{T}}\):

Total cost


Computer aided design


  1. 1.
    Etienne, A., Mirdamadi, S., Mohammadi, M., et al.: Cost engineering for variation management during the product and process development. Int. J. Interact. Des. Manuf. 11, 289–300 (2016)CrossRefGoogle Scholar
  2. 2.
    Dantan, J.Y., Hassan, A., Etienne, A., Siadat, A., Martin, P.: Information modeling for variation management during the product and manufacturing process design. Int. J. Interact. Des. Manuf. 2(2), 107–118 (2008)CrossRefGoogle Scholar
  3. 3.
    Etienne, A., Dantan, J.Y., Qureshi, J., Siadat, A.: Variation management by functional tolerance allocation and manufacturing process selection. Int. J. Interact. Des. Manuf. 2(4), 207–218 (2008)CrossRefGoogle Scholar
  4. 4.
    Xiao, X., Anwer, N., Durupt, A., et al.: Information exchange standards for design, tolerancing and additive manufacturing: a research review. Int. J. Interact. Des. Manuf. (2017).
  5. 5.
    Danjou, C., Le Duigou, J., Eynard, B.: Closed-loop manufacturing process based on STEP-NC. Int. J. Interact. Des. Manuf. 11, 233–245 (2015)CrossRefGoogle Scholar
  6. 6.
    Wan Din, W.I., Robinson, T.T., Armstrong, C.G., et al.: Using CAD parameter sensitivities for stack-up tolerance allocation. Int. J. Interact. Des. Manuf. 10, 139–151 (2014)CrossRefGoogle Scholar
  7. 7.
    Pierre, L., Teissandier, D., Nadeau, J.P.: Integration of thermo-mechanical strains into tolerancing analysis. Int. J. Interact. Des. Manuf. 3(4), 247–263 (2009)CrossRefGoogle Scholar
  8. 8.
    Demoly, F., Monticolo, D., Eynard, B., Rivest, L., Gomes, S.: Multiple view point modelling framework enabling integrated product-process design. Int. J. Interact. Des. Manuf. 4(4), 269–280 (2010)CrossRefGoogle Scholar
  9. 9.
    Lehtihet, E.A., Ranade, S., Dewan, P.: Comparative evaluation of tolerance control chart models. Int. J. Prod. Res. 38(7), 1539–1556 (2000)CrossRefzbMATHGoogle Scholar
  10. 10.
    Pairel, E., Goldschmidt, E., Adragna, P.-A., et al.: The pilot dimensions method: reconciling steering and conformity in workshops. Int. J. Prod. Res. 49(19), 5943–5956 (2011)CrossRefGoogle Scholar
  11. 11.
    Goldschmidt, E.: Gammes et cotation pour le réglage des machines-outils de décolletage. Thesis (PhD). University of Savoy, France (2009)Google Scholar
  12. 12.
    Wade, O.R.: Tolerance Control in Design and Manufacturing. Industrial Press, New York (1967)Google Scholar
  13. 13.
    Johnson, A.: Index tolerance chart simplies production. Tool Eng. 32(2), 53–62 (1954)Google Scholar
  14. 14.
    Mooney, C.T.: How to adjust tolerance charts. Tool Eng. 35(4), 75–81 (1955)Google Scholar
  15. 15.
    Gadzala, J.L.: Dimensional Control in Precision Manufacturing. McGrawHill, New York (1959)Google Scholar
  16. 16.
    Ngoi, B.K.A., Cheong, K.C.: The apparent path tracing approach to tolerance charting. Int. J. Adv. Manuf. Technol. 14(8), 580–587 (1998)CrossRefGoogle Scholar
  17. 17.
    Irani, S.A., Mittal, R.O., Lehtihet, E.A.: Tolerance chart optimization. Int. J. Prod. Res. 27(9), 1531–1552 (1989)CrossRefGoogle Scholar
  18. 18.
    Whybrew, K., et al.: A graph-theoretic approach to tolerance charting. Int. J. Adv. Manuf. Technol. 5(2), 175–183 (1990)CrossRefGoogle Scholar
  19. 19.
    Britton, G.A., Whybrew, K., Tor, S.B.: An industrial implementation of computer aided tolerance charting. Int. J. Adv. Manuf. Technol. 12(2), 122–131 (1996)CrossRefGoogle Scholar
  20. 20.
    Britton, G.A., Whybrew, K.: CATCH: Computer-aided tolerance charting. In: Zhang, H.C. (ed.) Advanced Tolerancing Techniques, pp. 461–489. John Wiley & Sons, New York (1997)Google Scholar
  21. 21.
    Ngoi, B.K.A., Tan, C.K.: Computer-aided tolerance charting: a ‘black box’ approach. Int. J. Prod. Res. 33(4), 1117–1134 (1995)CrossRefzbMATHGoogle Scholar
  22. 22.
    Xue, J., Ji, P.: Identifying tolerance chains with a surface-chain model in tolerance charting. J. Mater. Process. Technol. 123(1), 93–99 (2002)CrossRefGoogle Scholar
  23. 23.
    Ji, P., Xue, J.: CAATC—a computer-aided angular tolerance charting system. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 220(6), 883–892 (2006)CrossRefGoogle Scholar
  24. 24.
    Bourdet, P.: 1975. Chaînes de cotes de fabrication (méthode des delta L): deuxième partie, le mode opératoire. L’Ingénieur et Technicien de l’Enseignement Technique, 191 (May–June), 15–23 (1975)Google Scholar
  25. 25.
    Bourdet, P., Schneider, F.: 2007. Détermination des chaînes de cotes unidirectionnelles et quatification des tolérances. In: Spécification géométrique des produits, cotation et tolérancement ISO. Paris: Dunod, 269-290. (2007)Google Scholar
  26. 26.
    Fainguelernt, D., Weil, R., Bourdet, P.: Computer aided tolerancing and dimensioning in process planning. Ann. CIRP Manuf. Technol. 35(1), 381–386 (1986)CrossRefGoogle Scholar
  27. 27.
    Kumar, S.R., Alagumurthi, N., Ramesh, R.: Calculation of total cost, tolerance based on taguchi’s, asymmetric quality loss function approach. Am. J. Eng. Appl. Sci. 2(4), 628–634 (2009)CrossRefGoogle Scholar
  28. 28.
    kumar, Sampath R., Alagumurthi, Dr. N., Ramesh, Dr. R.: 2010. Integrated optimization of machining tolerance and Asymmetric quality loss cost for Rotor key base assembly. In: International Conference on Recent Advances in Mechanical Engineering (ICRAME2010), At Noorulislam University, Kanyakumari-629180, India (2010)Google Scholar
  29. 29.
    Dong, Z., Hu, W., Xue, D.: New production cost tolerance models for tolerance synthesis. J. Eng. Ind. Trans. ASME 116(2), 199–206 (1994)CrossRefGoogle Scholar
  30. 30.
    Taguchi, G., et al.: Taguchi’s Quality Engineering Handbook. Part III: Quality Loss Function, pp. 171–98. John Wiley & Sons, Hoboken (2005)Google Scholar
  31. 31.
    Noorul Haq, A., Sivakumar, K., Saravanan, R., et al.: Tolerance design optimization of machine elements using genetic algorithm. Int. J. Adv. Manuf. Technol. 25(3), 385–391 (2005)Google Scholar
  32. 32.
    Bourdet, P.: 1973. Chaînes de cotes de fabrication (méthode des delta L): première partie, le modèle. L’Ingénieuret Technicien de l’Enseignement Technique, 180 (November–December), 23–32 (1973)Google Scholar
  33. 33.
    Wade, O.R.: 1983. Tolerance control. In: Tool and manufacturing engineering handbook, volume 1: machining. Dearborn, MI: Society of Manufacturing Engineers, 2/1–2/60 (1983)Google Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Maroua Ghali
    • 1
  • Mehdi Tlija
    • 1
  • Eric Pairel
    • 2
  • Nizar Aifaoui
    • 1
  1. 1.Laboratory of Mechanical Engineering, National School of Engineers of Monastir (LGM_ENIM)University of MonastirMonastirTunisia
  2. 2.SYMMEUniversity of Savoie Mont BlancAnnecyFrance

Personalised recommendations