Design impact of acceptability and dependability in assisted living robotic applications

  • Filippo Cavallo
  • Raffaele Limosani
  • Laura Fiorini
  • Raffaele Esposito
  • Rocco Furferi
  • Lapo Governi
  • Monica Carfagni
Original Paper


This paper presents the implementation and investigation of a novel user centred method, adopted to design, develop and test a personal robot system, composed of a mobile robotic platform and a smart environment, for assisting people at home. As robots need to work closely with humans, novel interactive engineering design approaches are required to develop service robots that are adherent to end users’ needs and that can be quickly employed in daily life. Particularly, this paper presents a methodology based on the simultaneous evaluation of dependability and acceptability, thus leading to an innovative approach for metrics and benchmarks that includes not only the main technical attributes of dependability, but also the parameters of acceptability, both implemented via a user-centered design and co-creative approach. Additionally, dependability and acceptability form the basis for defining standardized methodologies to test and evaluate robotic systems in dedicated experimental infrastructures (or robotic facilities), which are conceived to facilitate engineers in their studies and assessments.


Companion robot Service robotics User centred design Dependability Acceptability 


  1. 1.
    Service Robotics Market by Operating Environment (Aerial, Ground, Marine)—2022\({\vert }\) MarketsandMarkets (2017). Retrieved March 5, 2018, from
  2. 2.
    Fiorini, L., Esposito, R., Bonaccorsi, M., Petrazzuolo, C., Saponara, F., Giannantonio, R., De Petris, G., Dario, P., Cavallo, F.: Enabling personalised medical support for chronic disease management through a hybrid robot-cloud approach. Auton. Robots 41, 1263–1276 (2017). CrossRefGoogle Scholar
  3. 3.
    Reppou, S., Karagiannis, G.: Social inclusion with robots: a RAPP case study using NAO for technology illiterate elderly at Ormylia Foundation, pp. 233–241. Springer, Cham (2015).
  4. 4.
    Fasola, J., Mataric, M.: A socially assistive robot exercise coach for the elderly. J. Hum. Robot Interact. 2(2), 3–32 (2013). Google Scholar
  5. 5.
    Stickdorn, M., Schneider, J. (Economist).: This is service design thinking: basics, tools, cases. BIS Publishers (2011). Retrieved March 5 2018, from
  6. 6.
    García-Soler, Á., Facal, D., Díaz-Orueta, U., Pigini, L., Blasi, L., Qiu, R.: Inclusion of service robots in the daily lives of frail older users: a step-by-step definition procedure on users’ requirements. Arch. Gerontol. Geriatr. 74, 191–196 (2018). CrossRefGoogle Scholar
  7. 7.
    Robinson, H., MacDonald, B., Broadbent, E.: The role of healthcare robots for older people at home: a review. Int. J. Soc. Robot. 6, 575–591 (2014)CrossRefGoogle Scholar
  8. 8.
    Dessimoz, J.-D., Gauthey, P.-F.: Domestic service robots in the real world: more on the case of intelligent robots following humans. Commun. Comput. Inf. Sci. 161, 88–101 (2011)Google Scholar
  9. 9.
    Dario, P., Guglielmelli, E., Laschi, C., Teti, G.: Technology and disability. Technology and Disability, vol. 10. Andover Medical Publishers (1991). Retrieved March 12 2018, from
  10. 10.
    Arras, K.O., Cerqui, D.: Do we want to share our lives and bodies with robots? A 2000 people survey. Technical Report 605-1 (2005).
  11. 11.
    Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13(3), 319 (1989). CrossRefGoogle Scholar
  12. 12.
    Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology: toward a unified view. MIS Q. 27, 425–478 (2003)CrossRefGoogle Scholar
  13. 13.
    Heerink, M., Krose, B., Evers, V., Wielinga, B.: Measuring acceptance of an assistive social robot: a suggested toolkit. In: RO-MAN 2009—The 18th IEEE International Symposium on Robot and Human Interactive Communication, pp. 528–533. IEEE (2009).
  14. 14.
    Ludewig, Y., Doring, N., Exner, N.: Design and evaluation of the personality trait extraversion of a shopping robot. In: 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, pp. 372–379. IEEE (2012).
  15. 15.
    Fasola, J., Matarić, M.J.: Using socially assistive human–robot interaction to motivate physical exercise for older adults. Proc. IEEE 100(8), 2512–2526 (2012)CrossRefGoogle Scholar
  16. 16.
    Cavallo, F., Limosani, R., Manzi, A., Bonaccorsi, M., Esposito, R., Di Rocco, M., Pecora, F., Teti, G., Saffiotti, A., Dario, P.: Development of a socially believable multi-robot solution from town to home. Cogn. Comput. 6(4), 954–967 (2014)CrossRefGoogle Scholar
  17. 17.
    Guiochet, J., Machin, M., Waeselynck, H.: Safety-critical advanced robots: a survey. Robot. Auton. Syst. 94, 43–52 (2017)CrossRefGoogle Scholar
  18. 18.
    Caselli, S., Monica, F., Reggiani, M.: YARA: A software framework enhancing service robot dependability. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 1970–1976. IEEE (2005).
  19. 19.
    Sommerville, I., Dewsbury, G.: Dependable domestic systems design: a socio-technical approach. Interact. Comput. 19(4), 438–456 (2007). CrossRefGoogle Scholar
  20. 20.
    Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J.: Complex Systems and Dependability, vol. 170. Springer, Berlin (2012).
  21. 21.
    Bischoff, R., Graefe, V.: Design principles for dependable robotic assistants. Int. J. Humanoid Rob. 1(1), 95–125 (2004)CrossRefGoogle Scholar
  22. 22.
    Metsis, V., Le, Z., Lei, Y., Makedon, F.: Towards an evaluation framework for assistive environments. In: Proceedings of the 1st ACM International Conference on PErvasive Technologies Related to Assistive Environments—PETRA ’08, 1 (2008).
  23. 23.
    Boussaada, Z., Curea, O., Camblong, H., Bellaaj Mrabet, N., Hacala, A.: Multi-agent systems for the dependability and safety of microgrids. Int. J. Interact. Des. Manuf. 10(1), 1–13 (2016)CrossRefGoogle Scholar
  24. 24.
    Matsas, E., Vosniakos, G.-C.: Design of a virtual reality training system for human-robot collaboration in manufacturing tasks. Int. J. Interact. Des. Manuf. 11(2), 139–153 (2017)CrossRefGoogle Scholar
  25. 25.
    Cavallo, F., Aquilano, M., Bonaccorsi, M., Mannari, I., Carrozza, M.C., Dario, P.: Multidisciplinary approach for developing a new robotic system for domiciliary assistance to elderly people. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Vol. 2011, pp. 5327–5330. IEEE (2011).
  26. 26.
    Cavallo, F., Aquilano, M., Bonaccorsi, M., Limosani, R., Manzi, A., Carrozza, M.C., Dario, P.: Improving domiciliary robotic services by integrating the ASTRO robot in an AmI infrastructure. Springer Tracts Adv. Robot. 94, 267–282 (2014). Google Scholar
  27. 27.
    Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Depend. Secure Comput. 1(1), 11–33 (2004)CrossRefGoogle Scholar
  28. 28.
    Dillon, A.: Human acceptance of information technology. In: International Encyclopedia of Ergonomics and Human Factors, pp. 1105–1108. Taylor and Francis, London (2006). Retrieved from March 5 2018,
  29. 29.
    Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology: toward a unified view. MIS Q. 24, 425–478 (2003)CrossRefGoogle Scholar
  30. 30.
    Heerink, M., Kröse, B.J.A., Evers, V., Wielinga, B.J.: Studying the acceptance of a robotic agent by elderly users. Int. Assist. Robot. Mechatron. 7(3), 33–43 (2006)Google Scholar
  31. 31.
    Santos, J.R.A.: Cronbach’s alpha: a tool for assessing the reliability of scales. J. Extension 37(2), 1–5 (1999)Google Scholar
  32. 32.
    Lichtenthäler, C., Peters, A., Griffiths, S., Kirsch, A.: Social navigation—identifying robot navigation patterns in a path crossing scenario. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8239 LNAI, pp. 84–93. Springer, Cham (2013).
  33. 33.
    Gu, Y., Lo, A., Niemegeers, I.: A survey of indoor positioning systems for wireless personal networks. IEEE Commun. Surv. Tutor. 11(1), 13–32 (2009). CrossRefGoogle Scholar
  34. 34.
    Eisa, S., Moreira, A.: Requirements and metrics for location and tracking for ambient assisted living. In: 2012 International Conference on Indoor Positioning and Indoor Navigation, IPIN 2012—Conference Proceedings, pp. 1–7. IEEE (2012).
  35. 35.
    Potortì, F., Park, S., Jiménez Ruiz, A., Barsocchi, P., Girolami, M., Crivello, A., Macias-Guarasa, J.: Comparing the performance of indoor localization systems through the EvAAL framework. Sensors 17(12), 2327 (2017). CrossRefGoogle Scholar
  36. 36.
    Livingston, M.A., Sebastian, J., Ai, Z., Decker, J.W.: Performance measurements for the Microsoft Kinect skeleton. In: 2012 IEEE Virtual Reality (VR), vol. 298(704), pp. 119–120 (2012).
  37. 37.
    Bonaccorsi, M., Fiorini, L., Cavallo, F., Saffiotti, A., Dario, P.: A cloud robotics solution to improve social assistive robots for active and healthy aging. Int. J. Soc. Robot. 8(3), 393–408 (2016)CrossRefGoogle Scholar
  38. 38.
    Wang, Y., Jin, Q., Ma, J.: Integration of range-based and range-free localization algorithms in wireless sensor networks for mobile clouds. In: Proceedings—2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, GreenCom-iThings-CPSCom 2013, pp. 957–961. IEEE (2013).
  39. 39.
    Arias, J., et al.: Malguki: an RSSI based ad hoc location algorithm. Microprocess. Microsyst. 28.8, 403–409 (2004)CrossRefGoogle Scholar
  40. 40.
    Hayes, A.F., Krippendorff, K.: Answering the call for a standard reliability measure for coding data. Commun. Methods Meas. 1(1), 77–89 (2007). CrossRefGoogle Scholar
  41. 41.
    Briand, R., Fischer, X., Arrijuria, O., Terrasson, G.: Multidisciplinary design process based on virtual prototyping for microsystem design. Virtual Phys. Prototyp. 5(3), 153–162 (2010). CrossRefGoogle Scholar
  42. 42.
    Dore, R., Pailhes, J., Fischer, X., Nadeau, J.P.: Identification of design variables and criterion variables towards the integration of user requirements into preliminary design. Int. J. Prod. Dev. 4(5), 508 (2007). CrossRefGoogle Scholar
  43. 43.
    Knight, H., Veloso, M., Simmons, R.: Taking candy from a robot: Speed features and candy accessibility predict human response. In: Proceedings—IEEE International Workshop on Robot and Human Interactive Communication, vol. 2015–Novem, pp. 355–362. IEEE (2015).
  44. 44.
    Flandorfer, P.: Population ageing and socially assistive robots for elderly persons: the importance of sociodemographic factors for user acceptance. Int. J. Popul. Res. 2012, 1–13 (2012). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The BioRobotics InstituteScuola Superiore Sant’AnnaPisaItaly
  2. 2.Department of Industrial EngineeringUniversity of FlorenceFlorenceItaly

Personalised recommendations