Skip to main content
Log in

Registration of mandibular movement for dental diagnosis, planning and treatment

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

During the last decade, due to the digitalization of many procedures in the dental workflow, dentistry has undergone many changes. To begin with, virtual articulators substituted traditional mechanical articulators. Thanks to virtual articulators, exploring more options (manufacture in clinic, laboratory in different materials, among others) for each case became possible. Now, this study proposes a step forward in the registration of the patients’ mandibular movements, which allows taking into account the kinematics of each patient’s mandible in the design of prostheses. Surgeons and dentists require a comprehensive simulation system of the mandibular movements as a support for their design work. Taking into consideration the market needs, this article describes the work carried out to develop a method to capture mandibular movement. Using a Leap Motion device and rapid prototyped pieces, the developed system is simple and economically affordable. To design a dental prosthesis taking into account the movements of the antagonist, the most significant information regarding these mandibular movements—lateral movements, retrusion, protrusion and chewing—is necessary. In order to minimize interventions at the clinic, this kinematic design is essential because it eliminates occlusal interferences. However, this registration system is only applicable when an intraoral scanner and a virtual face bow are already integrated. Since the maxillary and mandibular casts must simulate the registered movements, the origin and relative position between both casts is essential. This virtual location of models and simulation of these movements enables the dentist, surgeon and lab technician to achieve a more interactive design, thus leading to a more functional design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Park, J.H., Kim, J.E., Shim, J.S.: Digital workflow for a dental prosthesis that considers lateral mandibular relation. J. Prosthet. Dent. 117(3), 340–344 (2017)

    Article  Google Scholar 

  2. Solaberrieta, E., Mínguez, R., Barrenetxea, L., Otegi, J.R., Szentpétery, A.: Comparison of the accuracy of a 3-dimensional virtual method and the conventional method for transferring the maxillary cast to a virtual articulator. J. Prosthet. Dent. 113(3), 191–197 (2015)

    Article  Google Scholar 

  3. Solaberrieta, E., Garmendia, A., Mínguez, R., Brizuela, A., Pradies, A.: Virtual facebow technique. J. Prosthet. Dent. 114(6), 751–755 (2015)

    Article  Google Scholar 

  4. Solaberrieta, E., Etxaniz, O., Minguez, R., Gorozika, J., Barrenetxea, L., Sierra, E.: Virtual production of dental prostheses using a dental virtual articulator. Int. J. Interact. Des. Manuf. 9, 19–30 (2015)

    Article  Google Scholar 

  5. Seelbach, P., Brueckel, C., Woestmann, B.: Accuracy of digital and conventional impression techniques and workflow. Clin. Oral Investig. 17(7), 1759–1764 (2013)

    Article  Google Scholar 

  6. Starcke, E.N., Engelmeier, R.L., Belles, D.M.: The history of articulators: the "Articulator Wars" phenomenon with some circumstances leading up to it. J. Prosthodont. A. (2010). https://doi.org/10.1111/j.1532-849X.2009.00539.x

    Google Scholar 

  7. Mitchell, D.L., Wilkie, N.D.: Articulators through the years. Part I. Up to 1940. J. Prosthet. Dent. 39, 330–338 (1978)

    Article  Google Scholar 

  8. Mitchell, D.L., Wilkie, N.D.: Articulators through the years. Part II. From 1940. J. Prosthet. Dent. 39, 451–458 (1978)

    Article  Google Scholar 

  9. Reiss, B.: Occlusal surface design with Cerec 3D. Int. J. Comput. Dent. 6(4), 333–342 (2003)

    Google Scholar 

  10. Kaur, I., Datta, K.: CEREC: the power of technology. J. Indian Prosthodont. Soc. 6, 115–119 (2006)

    Article  Google Scholar 

  11. Otto, T., Schneider, D.: Long-term clinical results of chairside Cerec CAD/CAM inlays and onlays: a case series. Int. J. Prosthodont. 21(1), 53–59 (2008)

    Google Scholar 

  12. Szentpétery, A.: Computer aided dynamic correction of digitized occlusal surfaces. J. Gnathol. 16, 53–60 (1997)

    Google Scholar 

  13. Sójka, A., Huber, J., Kaczmarek, E., Hȩdzelek, W.: Evaluation of mandibular movement functions using instrumental ultrasound system. J. Prosthodont. 26(2), 123–128 (2017)

    Article  Google Scholar 

  14. Lippold, C., Hoppe, G., Moiseenko, T., Ehmer, U., Danesh, G.: Analysis of condylar differences in functional unilateral posterior crossbite during early treatment-a randomized clinical study. J. Orofac. Orthop. 69(4), 283–296 (2008)

    Article  Google Scholar 

  15. Dai, F., Wang, L., Chen, G., Chen, S., Xu, T.: Three-dimensional modeling of an individualized functional masticatory system and bite force analysis with an orthodontic bite plate. Int. J. Comput. Assist. Radiol. Surg. 11(2), 217–229 (2016)

    Article  Google Scholar 

  16. Wagner, J.D., Moore, D.L.: Preoperative laboratory testing for the oral and maxillofacial surgery patient. J. Oral Maxillofac. Surg. 49(2), 177–182 (1991)

    Article  Google Scholar 

  17. Teng, T.Terry Te-Yi, Ko, E.Ching, Huang, C.S., Chen, Y.: The effect of early physiotherapy on the recovery of mandibular function after orthognathic surgery for Class III correction: part I-jaw-motion analysis. J. Craniomaxillofac. Surg. 43(1), 131–137 (2015)

    Article  Google Scholar 

  18. Ching Ko, E., Huang, C.S., Lo, L., Chen, Y.: Longitudinal observation of mandibular motion pattern in patients with skeletal Class III malocclusion subsequent to orthognathic surgery. J. Oral Maxillofac. Surg. 70(2), 158–168 (2012)

    Article  Google Scholar 

  19. Baqaien, M., Barra, J., Muessig, D.: Computerized axiographic evaluation of the changes in sagittal condylar path inclination with dental and physical development. Am. J. Orthod. Dentofacial. Orthop. 135(1), 88–94 (2009)

    Article  Google Scholar 

  20. Ching Ko, E., Alazizi, A., Lin, C.: Three-dimensional surgical changes of mandibular proximal segments affect outcome of jaw motion analysis. J. Oral Maxillofac. Surg. 73(5), 971–984 (2015)

    Article  Google Scholar 

  21. Fang, J.J., Kuo, T.H.: Modelling of mandibular movement. Comput. Biol. Med. 38(11), 1152–1162 (2008)

    Article  Google Scholar 

  22. Fang, J.J., Kuo, T.H.: Tracked motion-based dental occlusion surface estimation for crown restoration. Comput. Aided Des. 41(4), 315–323 (2009)

    Article  Google Scholar 

  23. Kumar, V., Ludlow, J., Soares, L.H., et al.: In vivo comparison of conventional and cone beam CT synthesized cephalograms. Angle Orthod. 78(5), 873–879 (2008)

    Article  Google Scholar 

  24. Alsufyani, N., Noga, M., Finlay, W., et al.: Topical contrast agents to improve soft-tissue contrast in the upper airway using cone beam CT: a pilot study. Dentomaxillofac. Radio. 42(7), 20130022 (2013)

    Article  Google Scholar 

  25. Rottke, D., Patzelt, S., Poxleitner, P., et al.: Effective dose span of ten different cone beam CT devices. Dentomaxillofac. Radio. 42(7), 20120417 (2013)

    Article  Google Scholar 

  26. Solaberrieta, E., Mínguez, R., Barrenetxea, L., et al.: Direct transfer of the position of digitized casts to a virtual articulator. J. Prosthet. Dent. 109(6), 411–414 (2013)

    Article  Google Scholar 

  27. Barone, S., Casinelli, M., Frascaria, M., Paoli, A., Razionale, A.: Interactive design of dental implant placements through CAD-CAM technologies: from 3D imaging to additive manufacturing. Int. J. Interact. Des. Manuf. 10, 105–117 (2016)

    Article  Google Scholar 

  28. Delangle, M., Petiot, J.F., Poirson, E.: Using motion capture to study human standing accessibility: comparison between physical experiment, static model and virtual ergonomic evaluations. Int. J. Interact. Des. Manuf. 11, 515–524 (2017)

    Article  Google Scholar 

  29. Barone, S., Paoli, A., Razionale, A., Savignano, R.: Computer aided modelling to simulate the biomechanical behaviour of customised orthodontic removable appliances. Int. J. Interact. Des. Manuf. 10, 387–400 (2016)

    Article  Google Scholar 

  30. Garcia-Zapirain, B., de la Torre Díez, I., López-Coronado, M.: Dual system for enhancing cognitive abilities of children with ADHD using Leap Motion and eye-tracking technologies. J. Med. Syst. 41(7), 111 (2017)

    Article  Google Scholar 

  31. Sun, X., Byrns, S., Cheng, I., Zheng, B., Basu, A.: Smart sensor-based motion detection system for hand movement training in open surgery. J. Med. Syst. 41(2), 24 (2017)

    Article  Google Scholar 

  32. Smeragliuolo, A.H., Hill, N.J., Disla, L., Putrino, D.: Validation of the Leap Motion controller using markered motion capture technology. J. Biomech. 49(9), 1742–1750 (2016)

    Article  Google Scholar 

  33. Juanes, J.A., Gómez, J.J., Peguero, P.D., Ruisoto, P.: Digital environment for movement control in surgical skill training. J. Med. Syst. 40(6), 133 (2016)

    Article  Google Scholar 

  34. Tung, J.Y., Lulic, T., Gonzalez, D.A., Tran, J., Dickerson, C.R., Roy, E.A.: Evaluation of a portable markerless finger position capture device: accuracy of the Leap Motion controller in healthy adults. Physiol. Meas. 36(5), 1025–1035 (2015)

    Article  Google Scholar 

  35. Bachmann, D., Weichert, F., Rudak, B., Fisseler, D.: Analysis of the accuracy and robustness of the Leap Motion controller. Sensors 13(5), 6380–6393 (2013)

    Article  Google Scholar 

  36. Matta, R.E., Bergauer, B., Adler, W., Wichmann, M., Nickenig, H.: The impact of the fabrication method on the three-dimensional accuracy of an implant surgery template. J. Craniomaxillofac. Surg. 45(6), 804–808 (2017)

    Article  Google Scholar 

  37. Ramos, B., Santos, E.: Comparative study of different digitization techniques and their accuracy. Comput. Aided Des. 43(2), 188–206 (2011)

    Article  Google Scholar 

  38. Matta, R.E., Adler, W., Wichmann, M., Heckmann, S.M.: Accuracy of impression scanning compared with stone casts of implant impressions. J. Prosthet. Dent. 117(4), 507–512 (2017)

    Article  Google Scholar 

  39. Palousek, D., Omasta, M., Koutny, D., Bednar, J., Koutecky, T., Dokoupil, F.: Effect of matte coating on 3D optical measurement accuracy. Opt. Mater. 40, 1–9 (2015)

    Article  Google Scholar 

  40. Matta, R.E., Wilmowsky, C., Neuhuber, W., Lell, M., Neukam, F., Adler, W., Wichmann, M., Bergauer, B.: The impact of different cone beam computed tomography and multi-slice computed tomography scan parameters on virtual three-dimensional model accuracy using a highly precise ex vivo evaluation method. J. Craniomaxillofac. Surg. 44(5), 632–636 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank Andras Szentpetery, DDS, Ph.D., for his contribution to this project. He has been a most valuable guide on this research line. Besides, the authors of this paper want to thank the Faculty of Engineering of Bilbao for locating the Product Design Laboratory in their facilities and the University of the Basque Country UPV/EHU. Besides this, the authors thank to Gipuzkoa Provincial Council for financing this Project (DG17/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Solaberrieta.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical approval

This study has the Ethics Committee approval with the code CEISH/186/2013, coming from the University of the Basque Country UPV/EHU. Studies on patients or volunteers were required ethics committee approval and informed consent. Appropriate consents, permissions and releases were obtained for this publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solaberrieta, E., Barrenetxea, L., Minguez, R. et al. Registration of mandibular movement for dental diagnosis, planning and treatment. Int J Interact Des Manuf 12, 1027–1038 (2018). https://doi.org/10.1007/s12008-017-0438-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-017-0438-4

Keywords

Navigation