Inhabitable space control for the creation of healthy interactive spaces through emotional domotics

  • Sergio A. Navarro-TuchEmail author
  • M. Rogelio Bustamante-Bello
  • Arturo Molina
  • Javier Izquierdo-Reyes
  • Roberto Avila-Vazquez
  • Jose Luis Pablos-Hach
  • Yadira Gutiérrez-Martínez
Technical Paper


In recent years, Mexico’s level of different physiological and mental negative states, such as stress have increased. This has among its consequences, low work production and social problems including the alarming numbers that nearly 43% of adults report high levels of stress. The increase of stress incidence in people aged 15–29 years, and the lack of stress relief measures have an important impact on a person’s physical, mental and emotional health. In order to diminish these negative effects different approaches can be implemented for example, the use of audiovisual stimulus to induce emotions [1]. In this work the emotional analysis through facial expression is implemented [2, 3]. We propose the use of domotics to influence the user’s emotional state, creating an interactive space that reacts to the users emotions adapting to the most suitable scenario. The first experiments we conducted occurred in an industrial production simulator in which lights’ hue was varied in order to perceive the impact of such lights on the emotions reflected by the subject. The emotional impact was analyzed through the FACET\(^{\mathrm{TM}}\) module of the biometric platform iMotions\(^{\mathrm{TM}}\). These experiments together with the experience of other investigators leaded to the design and construction of an experimental booth that let us experiment with other variables like humidity and temperature. The design of one of such experiments is presented in this work based on a stress profile. This experiment’s objective is to allow us to correlate the impact of the environmental variables over the emotional state reflected on subjects’ expressions in order to integrate it for a control loop. The final system has multiple potential applications, among them one is the implementation for the analysis of design prototypes of both products and architecture models.


Emotional domotics Intelligent ambient Facial analysis Facial action coding system House automation 



Special acknowledgements and thanks to Eng. Claudio Raúl Zamora Rosales, Eng. Jorge Luis Bonilla Peralta, Eng. Emmanuel Nieto Casarrubias, Eng. Guadalupe Zeltzin Castillo Beltrán, Eng. Habid Raúl Velázquez Corral, Eng. Jaime Guillermo Morales Zavaleta, Eng. Leopoldo Julian Lechuga López, Eng. Daniel Svein Meinguer Estrada, Eng. Carlos Ochoa Salinas, Eng. Pedro Daniel Rubio Ortega, Eng. Israel Torres, Eng. Hoi Tak Leung Lam and Eng. Yadira Gutiérrez-Martínez for their contributions for the development of this project; this research is being supported by Centro de Investigación en Microsistemas y Biodiseño (CIMB) at Tecnológico de Monterrey, Campus Ciudad de Mexico.This research is done by the help of Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico, by the scholarship 339635.


  1. 1.
    Chakraborty, A., Konar, A., Chakraborty, U.K., Chatterjee, A.: Emotion recognition from facial expressions and its control using fuzzy logic. 726 IEEE Trans. Syst. Man Cybern.—Part a: Syst. Hum. 39(4), 726–743 (2009)CrossRefGoogle Scholar
  2. 2.
    Pantic, M., Patras, I.: Dynamics of facial expression : recognition of facial actions and their temporal segments. IEEE Trans. Syst. Man Cybern. 36(2), 433–449 (2006)CrossRefGoogle Scholar
  3. 3.
    Ekman, P., Friesen, W.V., Hager, J.C.: Facial Action Coding System, vol. 1. Research Nexus division of Network Information Research Coorporation, Salt Lake City (2002)Google Scholar
  4. 4.
    Navarro-Tuch, S.A., Bustamante-Bello, M.R., Avila-Vazquez, R., Izquierdo-Reyes, J., Ramirez-Mendoza, R., Gutierrez-Martinez, Y., Hach Pablos, J.L.: Emotional domotics: Inhabitable space variable control for the emotions modulation. SAI intelligent systems conference 2016, pp. 567–571. London, UK (2016)Google Scholar
  5. 5.
    Lang, P., Bradley, M., Cuthbert, B.: International affective picture system (IAPS): affective ratings of pictures and instruction manual. Technical Report A-8 (2008)Google Scholar
  6. 6.
    Herrera Quintero, L.F.: Viviendas inteligentes ( domótica ). Revista Ing. e Investig. 25(2), 47–53 (2005)Google Scholar
  7. 7.
    Coral Lozada, M.a.: Simulation platform for domotic systems. IEEE Colombian Conference on Communications and Computing (COLCOM), pp. 1–6 (2014). doi: 10.1109/ColComCon.2014.6860413
  8. 8.
    Ning, H.N.H., Ya-Hu, W.Y.H.W., Yi, T.Y.T.: Research of KNX device node and development based on the bus interface module. Control Conference (CCC), 29th Chinese, pp. 4346–4350 (2010)Google Scholar
  9. 9.
    Lin, C.T., Lin, B.S., Lin, F.C., Chang, C.J.: Brain computer interface-based smart living environmental auto-adjustment control system in UPnP home networking. IEEE Syst. J. 8(2), 363–370 (2014). doi: 10.1109/JSYST.2012.2192756 CrossRefGoogle Scholar
  10. 10.
    Ou, C.Z., Lin, B.S., Chang, C.J., Lin, C.T.: Brain computer interface-based smart environmental control system. Proceedings of the 8th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2012, pp. 281–284 (2012). doi: 10.1109/IIH-MSP.2012.74
  11. 11.
    Lutfi, S., Lucas, J.M., Montero, J.M.: Desarrollo de un asistente domótico emocional inteligente. In: XIX Jornadas Telecom I+D, pp. 1–5 (2009)Google Scholar
  12. 12.
    Ekman, P., Rosenberg, E.: What the Face Reveals, 2nd edn. Oxford University Press, Oxford (1997)Google Scholar
  13. 13.
    Khowaja, S.A., Dahri, K.: Facial expression recognition using two-tier classification and its application to smart home automation system. In: International Conference on Emerging Technologies (ICET), pp. 4–9 (2015). doi: 10.1109/ICET.2015.7389223
  14. 14.
    Bui, T.T.T., Phan, N.H., Spitsyn, V.G.: Face and hand gesture recognition algorithm based on wavelet transforms and principal component analysis. In: 7th International Forum on Strategic Technology (IFOST), pp. 3–6 (2013)Google Scholar
  15. 15.
    Wang, Yq: An analysis of the viola-jones face detection algorithm. Image Process. Line 4, 128–148 (2014)CrossRefGoogle Scholar
  16. 16.
    Jiang, B., Valstar, M.F., Pantic, M.: Action unit detection using sparse appearance descriptors in space-time video volumes. Face Gesture 2011, 314–321 (2011). doi: 10.1109/FG.2011.5771416 CrossRefGoogle Scholar
  17. 17.
    Ekman, P.: Emotions Revealed, 2nd edn. Henry Holt and Company, New York (2007)Google Scholar
  18. 18.
    Global marketing information company: face emotions and short surveys during automotive tasks. In: Council of American Survey Research Organizations (CASRO), April. J.D. power (2016)Google Scholar
  19. 19.
    Barmaki, R.: Gesture Assessment of Teachers in an Immersive Rehearsal Environment. Ph.D. thesis, University of Central Florida Electronic (2016)Google Scholar
  20. 20.
    Lee, W.S., Hong, S.H.: KNX - zigbee gateway for home automation. 4th IEEE Conference on Automation Science and Engineering, CASE 2008 pp. 750–755 (2008). doi: 10.1109/COASE.2008.4626433
  21. 21.
    Woo, S.L., Seung, H.H.: Implementation of a KNX-ZigBee gateway for home automation. In: Digest of Technical Papers–IEEE International Conference on Consumer Electronics, pp. 545–549 (2009). doi: 10.1109/ISCE.2009.5156866
  22. 22.
    Martirano, L., Marrocco, R., Liberati, F., Di Giorgio, A.: KNX protocol compliant load shifting and storage control in residential buildings. In: Industry Applications Society Annual Meeting, IEEE, pp. 1–6 (2015)Google Scholar
  23. 23.
    Bujdei, C., Moraru, S.A.: Ensuring comfort in office buildings: Designing a KNX monitoring and control system. Proceedings - 2011 7th International Conference on Intelligent Environments, IE 2011 pp. 222–229 (2011). doi: 10.1109/IE.2011.29
  24. 24.
    Sita, I.V.: Train comfort, access and security using KNX and LOGO! controllers. Electrical systems for aircraft, railway and ship propulsion, ESARS (2012). doi: 10.1109/ESARS.2012.6387411
  25. 25.
    Vanus, J., Cerny, M., Koziorek, J.: The proposal of the smart home care solution with KNX components. In: 38th International Conference on Telecommunications and Signal Processing (TSP) (2015)Google Scholar
  26. 26.
    Abascal Carranza, C.M.: NOM-015-STPS-2001 (2002)Google Scholar
  27. 27.
    Teck Boon, L., Mohd Heikal, H., Zarul Fitri, Z., Mohd Azam, O.: Eye 2H: A proposed automated smart home control system for detecting human emotions through facial detection. In: The 5th International Conference on Information and Communication Technology for The Muslim World (ICT4M), pp. 3–6 (2014). doi: 10.1109/ICT4M.2014.7020652
  28. 28.
    Fernández-Caballero, A., Martínez-Rodrigo, A., Pastor, J.M., Castillo, J.C., Lozano-Monasor, E., López, M.T., Zangróniz, R., Latorre, J.M., Fernández-Sotos, A.: Smart environment architecture for emotion detection and regulation. J. Biomed. Inform. 64, 55–73 (2016). doi: 10.1016/j.jbi.2016.09.015 CrossRefGoogle Scholar
  29. 29.
    Ortiz Garcia Cervigon, V., V. Sokolova, M., Garcia Muñoz, R.M., Fernández Caballero, A.: LED strips for color- and illumination-based emotion regulation at home. In: Ambient Assisted Living. ICT-based Solutions in Real Life Situations, chap. LED Strips. Springer International Publishing Switzerland (2015). doi: 10.1007/7854
  30. 30.
    Acampora, G., Vitiello, A.: Interoperable neuro-fuzzy services for emotion-aware ambient intelligence. Neurocomputing 122, 3–12 (2013). doi: 10.1016/j.neucom.2013.01.046 CrossRefGoogle Scholar
  31. 31.
    Aguayo González, R.: The lining of the energy space (El revestimiento del espacio energético). Ph.D. thesis, Polytechnic University of Catalonia (1999)Google Scholar
  32. 32.
    Lozano Alarcon, J.: NOM-025-STPS-2008 (2008)Google Scholar
  33. 33.
    MathWorks: Model a Dynamic SystemGoogle Scholar
  34. 34.
    García Arenas, D.: psychometric enviromental control by fuzzy logic (control ambiental psicometrico mediante logica difusa). Ph.D. thesis, Universidad Carlos III de Madrid (2010)Google Scholar
  35. 35.
    Kuehl, R.O.: Design of Experiments: Statistical Principles of Research Design and Analysis, 2nd edn. Thomson Learning, Mexico (1999)zbMATHGoogle Scholar
  36. 36.
    Montgomery, D.C.: Design and Analysis of Experiments, vol. 2, 8th edn. Wiley, Hoboken (2012). doi: 10.1198/tech.2006.s372
  37. 37.
    Nowack, K.M.: The stress profile. MANUAL MODERNO (2010)Google Scholar

Copyright information

© Springer-Verlag France 2017

Authors and Affiliations

  • Sergio A. Navarro-Tuch
    • 1
    Email author
  • M. Rogelio Bustamante-Bello
    • 1
  • Arturo Molina
    • 1
  • Javier Izquierdo-Reyes
    • 1
  • Roberto Avila-Vazquez
    • 1
  • Jose Luis Pablos-Hach
    • 1
  • Yadira Gutiérrez-Martínez
    • 1
  1. 1.Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey Centro de Investigación en Microsistemas y BiodiseñoMexico CityMexico

Personalised recommendations