Interactive process to control the evaporating temperature of refrigerant for solar adsorption cooling machine with new correlation

  • N. Cherrad
  • A. Benchabane
Original Paper


An interactive numerical process has been proposed to control the evaporating temperature of refrigerant for solar adsorption cooling machine with new correlation for the case of activated carbon AC35-methanol as working pair. The study has given a possibility to define the interactive relation between the evaporating temperature of refrigerant in the evaporator and the predicted temperature at start of adsorption in the adsorber. This can allow automating of the system using a thermostat for controlling and the regulation of opening of check valve to pass the refrigerant from the evaporator towards the adsorber.


Interactive process Correlation Refrigerant Evaporating temperature Temperature at start of adsorption Solar adsorption cooling machine 

List of symbols






Coefficient characterizing adsorbent–adsorbate pair


Adsorbate mass (kg)

\(\hbox {m}_{\mathrm{d}}\)

Adsorbent mass (kg)

\(\hbox {m}_{\mathrm{max}}\)

Maximal adsorbate mass (kg)

\(\hbox {m}_{\mathrm{min}}\)

Minimal adsorbate mass (kg)


Parameter of adjustment of Dubinin and Astakov equation


Equilibrium pressure of adsorbent–adsorbate pair (Pa)

\(\hbox {P}_{\mathrm{c}}\)

Condensing pressure of adsorbate (Pa)

\(\hbox {P}_{\mathrm{e}}\)

Evaporating pressure of adsorbate (Pa)

\(\hbox {P}_{\mathrm{s}}\)

Saturation pressure of adsorbate (Pa)


Temperature (K)

\(\hbox {T}_{\mathrm{a}}\)

Adsorption temperature (temperature at end of adsorption) (K)

\(\hbox {T}_{\mathrm{ad}}\)

Temperature at start of adsorption (K)

\(\hbox {T}_{\mathrm{c}}\)

Condensing temperature of refrigerant (K)

\(\hbox {T}_{\mathrm{d}}\)

Desorption temperature or temperature at start of desorption (K)

\(\hbox {T}_{\mathrm{e}}\)

Evaporating temperature of refrigerant (K)

\(\hbox {T}_{\mathrm{g}}\)

Generating temperature (temperature at end of desorption) (K)

\(\hbox {W}_{0}\)

Maximum adsorbed volume of adsorbate for 01 kg of adsorbent (\(\hbox {m}^{3}\)/kg)

\(\upvarepsilon \)

Relative error of convergence of computational algorithm

\(\uprho _{\mathrm{l}}\)

Density of the adsorbate in the liquid state (kg/\(\hbox {m}^{3}\))


  1. 1.
    Liu, Y., Leong, K.C.: The effect of operating conditions on the performance of zeolite/water adsorption cooling systems. Appl. Therm. Eng. 25(10), 1403–1418 (2005)CrossRefGoogle Scholar
  2. 2.
    Pons, M., Feng, Y.: Characteristic parameters of adsorptive refrigeration cycles with thermal regeneration. Appl. Therm. Eng. 17(3), 289–298 (1997)CrossRefGoogle Scholar
  3. 3.
    Critoph, R.E.: Performance limitations of adsorption cycles for solar cooling. Sol. Energy 41(1), 21–31 (1988)CrossRefGoogle Scholar
  4. 4.
    Teng, Y., Wang, R.Z., Wu, J.Y.: Study of the fundamentals of adsorption systems. Appl. Therm. Eng. 17(4), 327–338 (1997)CrossRefGoogle Scholar
  5. 5.
    Chekirou, W.: Étude et analyse d’une machine frigorifique solaire à adsorption. Université Mentouri-Constantine, Algérie (2008)Google Scholar
  6. 6.
    Cherrad, N., Benchabane, A., Sedira, L. Rouag, A.: Effect of heating time of adsorber-collector on the performance of a solar adsorption refrigerator. Int. J. Mech. Mater. Eng. 12(1) (2017)Google Scholar
  7. 7.
    Chekirou, W., Boussehain, R., Feidt, M., Karaali, A., Boukheit, N.: Numerical results on operating parameters influence for a heat recovery adsorption machine. Energy Proc 6, 202–216 (2011)CrossRefGoogle Scholar
  8. 8.
    Leite, A.P.F., Daguenet, M.: Performance of a new solid adsorption ice maker with solar energy regeneration. Energy Convers Manag 41(15), 1625–1647 (2000)CrossRefGoogle Scholar
  9. 9.
    Lemmini, F., Errougani, A.: Experimentation of a solar adsorption refrigerator in Morocco. Renew Energy 32(15), 2629–2641 (2007)CrossRefGoogle Scholar
  10. 10.
    Pons, M., Grenier, P.H.: A phenomenological adsorption equilibrium law extracted from experimental and theoretical considerations applied to the activated carbon + methanol pair. Carbon 24(5), 615–625 (1986)CrossRefGoogle Scholar
  11. 11.
    Douss, N., Meunier, F.: Effect of operating temperatures on coefficient of performance of active carbon-methanol systems. Heat Recover Syst CHP 8(5), 383–392 (1988)CrossRefGoogle Scholar
  12. 12.
    Bejan, A., Kraus, A.D.: Heat Transfer Handbook. Wiley, New York (2003)Google Scholar

Copyright information

© Springer-Verlag France 2017

Authors and Affiliations

  1. 1.Université Kasdi Merbah de Ouargla, Faculté des Sciences Appliquées, Département de Génie MécaniqueOuarglaAlgeria
  2. 2.Laboratoire de Génie Energétique et Matériaux, LGEMUniversité de BiskraBiskraAlgeria

Personalised recommendations