Effect of position of tension-loaded inserts on honeycomb panels used for space applications

Original Paper

Abstract

This study develops a numerical framework for the analysis of the sensitivity of real potting shape with respect to the position of the insert centre inside the cell geometry. An investigation using a finite element analysis to evaluate the effect on the position of ‘through-the-thickness’ inserts type in all aluminium honeycomb sandwich panels for spacecraft applications under tensile load. Twelve positions are presented and analysed. The distribution of stress due to the critical load is also determined in the core and face sheet for different potting shape and various insert positions. The results are very satisfactory and provide adequate shear stress distributions in honeycomb core between theoretical and various positions of the finite element models. The results show also how the pull-out strength of inserts in honeycomb/cored sandwich panels affected by the placing of the insert relative to the local honeycomb structure and the shape of the potting geometry which has a significant effect on the sandwich honeycomb panel.

Keywords

Honeycomb cell Insert Potting compound Finite element analysis Sandwich structures 

List of symbols

\(\hbox {E}_{\mathrm{f}}\)

Young’s modulus of face sheets

\(\hbox {F}_{\mathrm{C}}\)

Cross-sectional area of one core cell

\(\hbox {G}_{\mathrm{c}}\)

Core shear modulus

\(\hbox {G}_{1}, \hbox {G}_{2}, \hbox {G}_{3}, \hbox {G}_{4}, \hbox {G}_{5}\)

Potting shape geometry in honeycomb core for different position

K

Factor t determines the distribution of shear stress in the core with distance r from the insert axis, for rmax \(\rightarrow \) Kmax (height shear stress)

\(\hbox {N}_{\mathrm{PC}}\)

Number of core cells filled

P

Tensile load applied at insert

\(\hbox {P}_{\mathrm{crit}}\)

Insert-capability for shear honeycomb core failure

\(\hbox {P}_{1}, \hbox {P}_{2},{\ldots }\hbox {P}_{12}\)

Position of insert centre respective in the hexagonal cell

\(\hbox {S}_{\mathrm{c}}\)

Cell size

\(b_i\)

Insert radius

\(b_p\)

Potting radius

\(b_R\)

Real potting compound radius

c

Honeycomb core thickness

f

Face sheet thickness

h

Sandwich panel thickness

\(\hbox {h}_{\mathrm{i}}\)

Total insert height

\(\hbox {h}_{\mathrm{p}}\)

Total potting compound height

l

Cell wall length

\(\hbox {m}_{\mathrm{p}}\)

Potting mass

r

Radial distance from insert centre (point of normal load application)

\(\hbox {r}_{\mathrm{max}}\)

Radial position of maximum core shear stress

TTTIP

Through-the-thickness insert potting

t

Cell wall thickness

\({\upnu }_{\mathrm{f}}\)

Poisson’s ratio of face sheet material

\({\uptau }_{{\mathrm{c}\,\mathrm{crit}}}\)

Shear strength of the core

\({\uptau }_{{\mathrm{max}}}\)

Maximum core shear stress (the load-capability of an insert is reached when \({\uptau }_{{\mathrm{max}}} ={\uptau }_{{\mathrm{c}\,\mathrm{crit}}} )\)

References

  1. 1.
    ECSS.: Space Engineering Insert Design Handbook, vol. ECSS-E-HB-32-22A, ed. : ESA-ESTEC, Noordwijk (2011)Google Scholar
  2. 2.
    Zenkert,D.: An introduction to sandwich construction: engineering materials advisory services. Sheffield, UK (1995)Google Scholar
  3. 3.
    Campbell Jr., F.C.: Manufacturing Technology for Aerospace Structural Materials. Elsevier, Amsterdam (2011)Google Scholar
  4. 4.
    D’Amato, E.: Caratterizzazione strutturale di inserti per pannelli in composito, Parte I: Dati Sperimentali, XXXV Convenzione Nazioinale AIAS, Ancona (2006)Google Scholar
  5. 5.
    Thompson, R., Matthews, F., O’Rourke, B.: Load attachment for honeycomb panels in racing cars. Mater. Des. 16, 131–150 (1995)CrossRefGoogle Scholar
  6. 6.
    Bull, P.H., Thomsen, O.T.: Development of a design tool for initial analysis of inserts in sandwich structures. Sandw. Constr. 8, Icss 8 (2008)Google Scholar
  7. 7.
    Raghu, N., Battley, M., Southward, T.: Strength variability of inserts in sandwich panels. J. Sandw. Struct. Mater. 11, 501–517 (2009)CrossRefGoogle Scholar
  8. 8.
    Bozhevolnaya, E., Lyckegaard, A., Thomsen, O.T., Skvortsov, V.: Local effects in the vicinity of inserts in sandwich panels. Compos. Part B Eng. 35, 619–627 (2004)CrossRefGoogle Scholar
  9. 9.
    Raghu, N., Battley, M., Southward, T.: Strength variability of inserts in sandwich panels. In: A.J.M. Ferreira (ed.) Proceedings of the 8th international conference on sandwich structures, pp. 501–517, Porto, Portugal (2009)Google Scholar
  10. 10.
    Bianchi, G., Aglietti, G.S., Richardson, G.: Static performance of hot bonded and cold bonded inserts in honeycomb panels. J. Sandw. Struct. Mater. (2010)Google Scholar
  11. 11.
    Youngquist, W., Kuenzi, E.W.: Supplement to Stresses Induced in a Sandwich Panel by Load Applied at an Insert. Dept. Of Agriculture, Forest Service, Forest Products Laboratory, Madison (1955)Google Scholar
  12. 12.
    Atas, C., Basmaci, A.: Damage behavior of potting materials in sandwich composites with pinned joints. Sci. Eng. Compos. Mater. 22, 517–523 (2015)CrossRefGoogle Scholar
  13. 13.
    Seemann, R., Krause, D.: Virtual testing of Nomex honeycomb sandwich panel inserts. In: Proceedings of the 20th international conference on composite materials ICCM-20. Copenhagen, Denmark (2015)Google Scholar
  14. 14.
    Smith, B., Banerjee, B.: Reliability of inserts in sandwich composite panels. Compos. Struct. 94, 820–829 (2012)CrossRefGoogle Scholar
  15. 15.
    Thomsen, O.T.: Sandwich plates with ‘through-the-thickness’ and ‘fully potted’inserts: evaluation of differences in structural performance. Compos. Struct. 40, 159–174 (1997)Google Scholar
  16. 16.
    Wolff, J., Trimpe, F., Zerlik, R., Hühne, C.: Evaluation of an analytical approach predicting the transversal failure load of insert connections in sandwich structures (2015)Google Scholar
  17. 17.
    Yoke-Chin, C.: Weight estimation of composite secondary structure. In: 24th international congress of the aeronautical sciences ICAS, vol. Yokohama, Japan 29 August–3 September (2004)Google Scholar
  18. 18.
    Fu, M., Yin, J.: equivalent elastic parameters of the honeycomb core. Acta Mech. sin. 15, 113–118 (1999)Google Scholar
  19. 19.
    Xu, S-j, Kong, X-r, Wang, B-l, Ma, X-r, Zhang, X-c: Method of equivalent analysis for statics and dynamics behavior of orthotropic honeycomb sandwich plates. Fuhe Cailiao Xuebao(Acta Materiae Compositae Sinica)(China)(China) 17, 92–95 (2000)Google Scholar
  20. 20.
    Guj, L., Sestieri, A.: Dynamic modeling of honeycomb sandwich panel. Arch. Appl. Mech. 77, 779–793 (2007)CrossRefMATHGoogle Scholar
  21. 21.
    Zhang, J.: Equivalent laminated model of the aluminum honeycomb sandwich panel. Int Conf Mat Sci Appl (ICMSA-15) (2015). doi: 10.2991/icmsa-15.2015.58
  22. 22.
    Cushman, J.P., Murphy, R.: Geometric considerations in the design of honeycomb sandwich fasteners. J. Spacecr. Rockets 3, 1686–1688 (1966)CrossRefGoogle Scholar
  23. 23.
    Boudjemai, A., Mankour, A., Salem, H., Amri, R., Hocine, R., Chouchaoui, B.: Inserts thermal coupling analysis in hexagonal honeycomb plates used for satellite structural design. Appl. Therm. Eng. 67, 352–361 (2014)CrossRefGoogle Scholar
  24. 24.
    Boudjemai, A., Amri, R., Mankour, A., Salem, H., Bouanane, M., Boutchicha, D.: Modal analysis and testing of hexagonal honeycomb plates used for satellite structural design. Mater. Des. 35, 266–275 (2012)CrossRefGoogle Scholar
  25. 25.
    Roy, R., Nguyen, K., Park, Y., Kweon, J., Choi, J.: Testing and modeling of \(\text{ Nomex }^{{\rm TM}}\) honeycomb sandwich Panels with bolt insert. Compos. Part B Eng. 56, 762–769 (2014)CrossRefGoogle Scholar
  26. 26.
    Andrisano, A.O., Leali, F., Pellicciari, M., Pini, F., Vergnano, A.: Hybrid Reconfigurable System design and optimization through virtual prototyping and digital manufacturing tools. Int. J. Interact. Des. Manuf. (IJIDeM) 6, 17–27 (2012)CrossRefGoogle Scholar
  27. 27.
    Slimane, A., Bouchouicha, B., Benguediab, M., Slimane, S.-A.: Parametric study of the ductile damage by the Gurson–Tvergaard–Needleman model of structures in carbon steel A48-AP. J. Mater. Res. Technol. 4, 217–223 (2015)CrossRefGoogle Scholar
  28. 28.
    Song, K.-I., Choi, J.-Y., Kweon, J.-H., Choi, J.-H., Kim, K.-S.: An experimental study of the insert joint strength of composite sandwich structures. Compos. Struct. 86, 107–113 (2008)CrossRefGoogle Scholar
  29. 29.
    Bunyawanichakul, P., Castanie, B., Barrau, J.-J.: Experimental and numerical analysis of inserts in sandwich structures. Appl. Compos. Mater. 12, 177–191 (2005)CrossRefGoogle Scholar
  30. 30.
    Wahl, L., Maas, S., Waldmann, D., Zürbes, A., Frères, P.: Fatigue in the core of aluminum honeycomb panels: lifetime prediction compared with fatigue tests. Int. J. Damage Mech. 23, 661–683 (2014)CrossRefGoogle Scholar
  31. 31.
    Baaran, J., Kärger, L., Wetzel, A.: Efficient prediction of damage resistance and tolerance of composite aerospace structures. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 222, 179–188 (2008)CrossRefGoogle Scholar
  32. 32.
    Zhang, J., Ashby, M.: The out-of-plane properties of honeycombs. Int. J. Mech. Sci. 34, 475–489 (1992)CrossRefGoogle Scholar
  33. 33.
    Mohammed, D.F., Ameen, H.A., Mashloosh, K.M.: Experimental and numerical analysis of AA3003 honeycomb sandwich panel with different configurations. Am. J. Sci. Indus. Res. 6(2), 25–32 (2015)Google Scholar

Copyright information

© Springer-Verlag France 2017

Authors and Affiliations

  1. 1.Laboratoire de mécanique appliquée, Département de Génie MécaniqueUniversité des Sciences et de la technologie d’Oran Mohamed Boudiaf, USTO-MBOranAlgeria
  2. 2.Centre of Satellite Development (CDS)OranAlgeria
  3. 3.Laboratory of Materials and Reactive Systems LMSR, Department of Mechanical EngineeringUniversity Djilali LiabesSidi Bel AbbesAlgeria

Personalised recommendations