A study of the effects of advanced driver assistance systems alerts on driver performance


This paper deals with the application of interactive engineering through an electroencephalogram (EEG) to detect the level of distraction or concentration of drivers of automotive vehicles. In particular, for the case of alerts, signals or outputs emitted by an advanced driver assistance systems (ADAS) in the intelligent transportation systems context. To do that and based on the state-of-the-art, an experimental protocol to detect distraction by using EEG signals of driver has been developed. Finally, the goal is to detect if drivers paid attention on the road when different kinds of alerts are emitted by the ADAS. In terms of signal processing, the challenge was the noise level in EEG records due to quality of road that had some bumpers and potholes that add noise in records due to movements of drivers. With the proposed protocol, the efficiency and utility of ADAS can be evaluated by designers to create new adaptable cabins to provide the driver a better driving environment reducing distractions according to the neurological profile. New perspectives and discussion are formulated in this paper, for example, to enhance the interactive design of the automotive vehicle cabins.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.


  2. 2.


  3. 3.



  1. 1.

    Allison, B., Graimann, B., Gräser, A.: Why use a BCI if you are healthy. BrainPlay: Brain–Computer Interfaces Games Work. ACE, Advances in Computer Entertainment, pp. 1–5 (2007)

  2. 2.

    Reuschenbach, A., Wang, M., Ganjineh, T., Göhring, D.: IDriver—human machine interface for autonomous cars. In: Proceedings–2011 8th International Conference on Information Technology: New Generations, ITNG 2011, pp. 435–440 (2010). doi:10.1109/ITNG.2011.83

  3. 3.

    Liao, L.D., Lin, C.T., McDowell, K., Wickenden, A.E., Gramann, K., Jung, T.P., Ko, L.W., Chang, J.Y.: Biosensor technologies for augmented brain–computer interfaces in the next decades. Proc. IEEE 100(SPL CONTENT), 1553–1566 (2012). doi:10.1109/JPROC.2012.2184829

    Article  Google Scholar 

  4. 4.

    Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain computer interfaces—a review. Sensors 12(2), 1211–1279 (2012). doi:10.3390/s120201211

    Article  Google Scholar 

  5. 5.

    Haufe, S., Treder, M.S., Gugler, M.F., Sagebaum, M., Curio, G., Blankertz, B.: EEG potentials predict upcoming emergency brakings during simulated driving. J. Neural Eng. 8(5), 056,001 (2011). doi:10.1088/1741-2560/8/5/056001

    Article  Google Scholar 

  6. 6.

    Shin, D., Kim, T., Kim, S., Shin, D.: Design and implementation of smart driving system using context recognition system. In: Proceedings of the IEEE Symposium on Computers and Informatics, pp. 84–89 (2011). doi:10.1109/ISCI.2011.5958889

  7. 7.

    Lin, C.t., Chen, S.a., Ko, L.w., Wang, Y.k., Acquisition, A.E.E.G.S.: EEG-based brain dynamics of driving distraction. In: Proceedings of International Joint Conference on Neural Networks, pp. 1497–1500 (2011)

  8. 8.

    Wei, C.S., Chuang, S.W., Wang, W.R., Ko, L.W., Jung, T.P., Lin, C.T.: Implementation of a motion sickness evaluation system based on EEG spectrum analysis. In: Proceedings—IEEE International Symposium on Circuits and Systems, pp. 1081–1084 (2011). doi:10.1109/ISCAS.2011.5937757

  9. 9.

    Borghini, G., Vecchiato, G., Toppi, J., Astolfi, L., Maglione, A., Isabella, R., Caltagirone, C., Kong, W., Wei, D., Zhou, Z., Polidori, L., Vitiello, S., Babiloni, F.: Assessment of mental fatigue during car driving by using high resolution EEG activity and neurophysiologic indices. In: Conference Proceedings ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE Engineering in Medicine and Biology Society Annual Conference (cm), 6442–5 (2012). doi:10.1109/EMBC.2012.6347469

  10. 10.

    Cernea, D., Olech, P.s., Ebert, A., Kerren, A.: Controlling In-Vehicle Systems with a commercial EEG headset: performance and cognitive load. OpenAccess Series in Informatics pp. 113–122 (2012). doi:10.4230/OASIcs.VLUDS.2011.113

  11. 11.

    Lin, C.T., Tsai, S.F., Ko, L.W.: EEG-based learning system for online motion sickness level estimation in a dynamic vehicle environment. IEEE Trans. Neural Netw. Learn. Syst. 24(10), 1689–1700 (2013). doi:10.1109/TNNLS.2013.2275003

    Article  Google Scholar 

  12. 12.

    Mercep, L., Spiegelberg, G., Knoll, A.: Reducing the impact of vibration-caused artifacts in a brain-computer interface using gyroscope data. In: Eurocon 2013, July, pp. 1753–1756 (2013). doi:10.1109/EUROCON.2013.6625214

  13. 13.

    Dijksterhuis, C., de Waard, D., Brookhuis, K.A., Mulder, B.L.J.M., de Jong, R.: Classifying visuomotor workload in a driving simulator using subject specific spatial brain patterns. Front. Neurosci. 7(7 AUG), 1–11 (2013). doi:10.3389/fnins.2013.00149

    Google Scholar 

  14. 14.

    Kim, I.H., Kim, J.W., Haufe, S., Lee, S.W.: Detection of multi-class emergency situations during simulated driving from ERP. In: 2013 International Winter Work. Brain–Computer Interface, BCI 2013, pp. 49–51 (2013). doi:10.1109/IWW-BCI.2013.6506626

  15. 15.

    Kim, J.W., Kim, I.H., Lee, S.W.: Neuro-driving: Automatic perception technique for upcoming emergency situations. In: 2013 International Winter Work. Brain–Computer Interface, BCI 2013, pp. 8–9 (2013). doi:10.1109/IWW-BCI.2013.6506609

  16. 16.

    Kim, J.W., Kim, I.H., Lee, S.W.: Detection of braking intention during simulated driving based on EEG analysis: online study. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp. 887–891 (2015). doi:10.1109/SMC.2015.163

  17. 17.

    Kim, I.H., Kim, J.W., Haufe, S., Lee, S.W.: Detection of braking intention in diverse situations during simulated driving based on EEG feature combination. J. Neural Eng. 12(1), 016,001 (2015). doi:10.1088/1741-2560/12/1/016001

    Article  Google Scholar 

  18. 18.

    Liu, Y.T., Lin, Y.Y., Wu, S.L., Chuang, C.H., Lin, C.T.: Brain dynamics in predicting driving fatigue using a recurrent self-evolving fuzzy neural network. IEEE Trans. Neural Netw. Learn. Syst. 27(2), 347–360 (2015). doi:10.1109/TNNLS.2015.2496330

    Article  Google Scholar 

  19. 19.

    Khan, M.J., Hong, K.S.: Passive BCI based on drowsiness detection: an fNIRS study. Biomed. Opt. Express 6(10), 4063 (2015). doi:10.1364/BOE.6.004063

  20. 20.

    Dehzangi, O., Williams, C.: Towards multi-modal wearable driver monitoring: impact of road condition on driver distraction. In: Proceedings of the 2015 IEEE International Conference on Body Sensor Networks, pp. 1–6 (2015). doi:10.1109/BSN.2015.7299408

  21. 21.

    Shende, P.M., Jabade, V.S.: Literature review of brain computer interface (BCI) using electroencephalogram signal. In: 2015 International Conference on Pervasive Computing, Advanced Communication Technology and Application for Society, ICPC 2015 (c), pp. 3–7 (2015). doi:10.1109/PERVASIVE.2015.7087109

  22. 22.

    Tan, D., Nijholt, A.: Brain-computer interfaces. In: Tan, D.S., Nijholt, A. (eds.) Human-Computer Interaction, Chapter. Brain–Computer, Ser., 1 edn., pp. 3–19. Springer, London (2010). doi:10.1007/978-1-84996-272-8

  23. 23.

    Gürkök, H., Nijholt, A.: BrainComputer Interfaces for Multimodal Interaction: A Survey and Principles. Int. J. Hum. Comput. Interact. 28(5), 292–307 (2012). doi:10.1080/10447318.2011.582022

    Article  Google Scholar 

  24. 24.

    Abdulkader, S.N., Atia, A., Mostafa, M.S.M.: Brain computer interfacing: Applications and challenges. Egypt. Informatics J. 16(2), 213–230 (2015). doi:10.1016/j.eij.2015.06.002

    Article  Google Scholar 

  25. 25.

    George, L., Lécuyer, A.: An overview of research on passive brain-computer interfaces for implicit human-computer interaction. Int. Conf. Appl. Bionics Biomech. ICABB 2010 (2010)

  26. 26.

    Amiri, S., Fazel-Rezai, R., Asadpour, V.: A review of hybrid brain-computer interface systems. Adv. Hum. Comput. Interact. (2013). doi:10.1155/2013/187024

    Google Scholar 

  27. 27.

    Fan, Xa, Bi, L., Teng, T., Ding, H., Liu, Y.: A brain–computer interface-based vehicle destination selection system using P300 and SSVEP signals. IEEE Trans. Intell. Transp. Syst 16(1), 274–283 (2015). doi:10.1109/TITS.2014.2330000

    Article  Google Scholar 

  28. 28.

    Izquierdo-Reyes, J., Ramirez-Mendoza, R.A., Bustamante-Bello, M.R., Navarro-Tuch, S., Avila-Vazquez, R.: Advanced driver monitoring for assistance system (ADMAS). Int. J. Interact. Des. Manuf. (2016). doi:10.1007/s12008-016-0349-9

    Google Scholar 

  29. 29.

    Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4–5), 411–430 (2000). doi:10.1016/S0893-6080(00)00026-5

    Article  Google Scholar 

  30. 30.

    Bell, A.J., Sejnowski, T.J.: Information-maximization approach to blind separation and blind deconvolution. Technology 1159(6), 1129–1159 (1995). doi:10.1162/neco.1995.7.6.1129

    Google Scholar 

  31. 31.

    Wu, R.C.W.R.C., Liang, S.F.L.S.F., Lin, C.T.L.C.T., Hsu, C.F.H.C.F.: Applications of event-related-potential-based brain computer interface to intelligent transportation systems. IEEE Int. Conf. Netw. Sens. Control. 2, 813–818 (2004). doi:10.1109/ICNSC.2004.1297051

    Google Scholar 

Download references


This research is done by the help of Tecnologico de Monterrey and Consejo Nacional de Ciencia y Tecnología (CONACYT) Mexico, by the scholarship 593255.

Author information



Corresponding author

Correspondence to Ricardo A. Ramirez-Mendoza.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Izquierdo-Reyes, J., Ramirez-Mendoza, R.A. & Bustamante-Bello, M.R. A study of the effects of advanced driver assistance systems alerts on driver performance. Int J Interact Des Manuf 12, 263–272 (2018). https://doi.org/10.1007/s12008-016-0368-6

Download citation


  • Passive BCI
  • Driver distraction
  • Advanced driver assistance system