Skip to main content

Appraisal of open software for finite element simulation of 2D metal sheet laser cut

Abstract

FEA simulation of thermal metal cutting is central to interactive design and manufacturing. It is therefore relevant to assess the applicability of FEA open software to simulate 2D heat transfer in metal sheet laser cuts. Application of open source code (e.g. FreeFem++, FEniCS, MOOSE) makes possible additional scenarios (e.g. parallel, CUDA, etc.), with lower costs. However, a precise assessment is required on the scenarios in which open software can be a sound alternative to a commercial one. This article contributes in this regard, by presenting a comparison of the aforementioned freeware FEM software for the simulation of heat transfer in thin (i.e. 2D) sheets, subject to a gliding laser point source. We use the commercial ABAQUS software as the reference to compare such open software. A convective linear thin sheet heat transfer model, with and without material removal is used. This article does not intend a full design of computer experiments. Our partial assessment shows that the thin sheet approximation turns to be adequate in terms of the relative error for linear alumina sheets. Under mesh resolutions better than \(10^{-5}\) m , the open and reference software temperature differ in at most 1 \(\%\) of the temperature prediction. Ongoing work includes adaptive re-meshing, nonlinearities, sheet stress analysis and Mach (also called ‘relativistic’) effects.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Abbreviations

FEM/FEA:

Finite element method/finite element analysis

\(\mathbf {x},\,t\) :

Coordinates describing the spatial [xy] and temporal \(t \ge 0\) domain of the simulation ([mm], s)

\(u = u(\mathbf {x},t)\) :

Temperature distribution along the sheet at a given time (K)

\(\rho \) :

Sheet metal density \(\left( \frac{\mathrm{kg}}{\mathrm{m^3}}\right) \)

\(c_p\) :

Sheet specific heat capacity \(\left( \frac{\mathrm{J}}{\mathrm{kg\,K}}\right) \)

k :

Sheet thermal conductivity \(\left( \frac{\mathrm{W}}{\mathrm{m\,K}}\right) \)

R :

Sheet reflectivity i.e., portion of the laser energy that is not absorbed by the sheet (\(0 \le R \le 1\))

\(\Delta z\) :

Sheet thickness (m)

\(q = q(u)\) :

Heat loss due to convection at the sheet surface \(\left( \frac{\mathrm{W}}{\mathrm{m^2}}\right) \)

h :

Natural convection coefficient of the sheet surrounding medium \(\left( \frac{\mathrm{W}}{\mathrm{m^2\,K}}\right) \)

\(u_\infty \) :

Temperature of the sheet surrounding medium (K)

\(S = S(\mathbf {x},t)\) :

Laser power density distribution along the sheet at a given time \(\left( \frac{\mathrm{W}}{\mathrm{m^3}}\right) \)

P :

Laser power (W)

\(\sigma \) :

Gaussian laser model’s parameter (m)

\(\mathbf {x_0} = \mathbf {x_0}(t)\) :

Laser spot 2D coordinates \([x_0(t),y_0(t)]\) at a given time ([mm])

v :

Laser scanning speed \(\left( \mathrm{\frac{m}{s}}\right) \)

\(\varepsilon \) :

Kerf width of the laser (m)

\(u_{ref} = u_{ref}(\mathbf {x},t)\) :

Reference temperature used to measure the relative error of a given solution (K). This article considers the temperature distribution obtained by the ABAQUS software as reference

\(E = E(\mathbf {x},t)\) :

Relative error distribution of a software approximation w.r.t. \(u_{ref}\) along the sheet at a given time

\({ ME} = { ME}(t)\) :

Maximum relative error of a software temperature approximation w.r.t. \(u_{ref}\) at a given time

References

  1. Posada, J., Toro, C., Barandiaran, I., Oyarzun, D., Stricker, D., De Amicis, R., Pinto, E., Eisert, P., Dollner, J., Vallarino, I.: Visual computing as a key enabling technology for industrie 4.0 and industrial internet. IEEE Comput. Graph. 35(2), 26–40 (2015). doi:10.1109/MCG.2015.45

    Article  Google Scholar 

  2. Yilbas, B.S., Arif, A.F.M., Abdul Aleem, B.J.: Laser cutting of rectangular blanks in thick sheet steel: effect of cutting speed on thermal stresses. J. Mater. Eng. Perform. 19(2), 177–184 (2010). doi:10.1007/s11665-009-9477-8

    Article  Google Scholar 

  3. Song, W.Q., Xu, W.J., Wang, X.Y., Meng, J.B., Li, H.Y.: Numerical simulation of temperature field in plasma-arc flexible forming of laminated-composite metal sheets. Trans. Nonferr. Metals Soc. 19, s61–s67 (2009). doi:10.1016/S1003-6326(10)60246-4

    Article  Google Scholar 

  4. Joshi, A., Kansara, N., Das, S., Kuppan, P., Venkatesan, K.: A study of temperature distribution for laser assisted machining of ti-6al-4 v alloy. Proc. Eng. 97, 1466–1473 (2014). doi:10.1016/j.proeng.2014.12.430

    Article  Google Scholar 

  5. Tagliaferri, F., Leopardi, G., Semmler, U., Kuhl, M., Palumbo, B.: Study of the influences of laser parameters on laser assisted machining processes. Proc. CIRP 8, 170–175 (2013). doi:10.1016/j.procir.2013.06.084

    Article  Google Scholar 

  6. Akarapu, R., Li, B.Q., Segall, A.: A thermal stress and failure model for laser cutting and forming operations. J. Fail. Anal. Prev. 4(5), 51–62 (2004). doi:10.1361/15477020420756

    Article  Google Scholar 

  7. Yilbas, B.S., Akhtar, S.S.: Laser bending of metal sheet and thermal stress analysis. Opt. Laser Technol. 61, 34–44 (2014). doi:10.1016/j.optlastec.2013.12.023

    Article  Google Scholar 

  8. Akhtar, S.S.: Laser cutting of thick-section circular blanks: thermal stress prediction and microstructural analysis. Int. J. Adv. Manuf. Tech. 71(5–8), 1345–1358 (2014). doi:10.1007/s00170-013-5594-5

    Article  Google Scholar 

  9. Nadeem, Q., Na, S.J.: Deformation behavior of laser bending of circular sheet metal. Chin. Opt. Lett. 9(5), 051402 (2011). doi:10.3788/COL201109.051402

    Article  Google Scholar 

  10. Yilbas, B.S., Akhtar, S.S., Karatas, C.: Laser straight cutting of alumina tiles: thermal stress analysis. Int. J. Adv. Manuf. Tech. 58(9–12), 1019–1030 (2012). doi:10.1007/s00170-011-3439-7

    Article  Google Scholar 

  11. Akhtar, S., Kardas, O.O., Keles, O., Yilbas, B.S.: Laser cutting of rectangular geometry into aluminum alloy: Effect of cut sizes on thermal stress field. Opt. Laser Eng. 61, 57–66 (2014). doi:10.1016/j.optlaseng.2014.04.016

    Article  Google Scholar 

  12. Nyon, K.Y., Nyeoh, C.Y., Mokhtar, M., Abdul-Rahman, R.: Finite element analysis of laser inert gas cutting on inconel 718. Int. J. Adv. Manuf. Tech. 60(9–12), 995–1007 (2012). doi:10.1007/s00170-011-3655-1

    Article  Google Scholar 

  13. Yan, Y., Ji, L., Bao, Y., Chen, X., Jiang, Y.: \({\rm CO}_2\) laser high-speed crack-free cutting of thick-section alumina based on close-piercing lapping technique. Int. J. Adv. Manuf. Tech. 64(9–12), 1611–1624 (2013). doi:10.1007/s00170-012-4127-y

    Article  Google Scholar 

  14. Yan, Y., Li, L., Sezer, K., Wang, W., Whitehead, D., Ji, L., Bao, Y., Jiang, Y.: \({\rm CO}_2\) laser underwater machining of deep cavities in alumina. J. Eur. Ceram. Soc. 31(15), 2793–2807 (2011). doi:10.1016/j.jeurceramsoc.2011.06.015

    Article  Google Scholar 

  15. Gross, M.S.: On gas dynamic effects in the modelling of laser cutting processes. Appl. Math. Model. 30(4), 307–318 (2006). doi:10.1016/j.apm.2005.03.021

    Article  MATH  Google Scholar 

  16. Modest, M.F.: Three-dimensional, transient model for laser machining of ablating/decomposing materials. Int. J. Heat Mass Transf. 39(2), 221–234 (1996). doi:10.1016/0017-9310(95)00134-U

    Article  Google Scholar 

  17. Modest, M.F.: Laser through-cutting and drilling models for ablating/decomposing materials. J. Laser Appl. 9(3), 137–145 (1997). doi:10.2351/1.4745453

    Article  Google Scholar 

  18. Kim, M.J.: Transient evaporative laser-cutting with boundary element method. Appl. Math. Model. 25(1), 25–39 (2000). doi:10.1016/S0307-904X(00)00034-2

    Article  MathSciNet  MATH  Google Scholar 

  19. Kim, M.J.: Transient evaporative laser cutting with moving laser by boundary element method. Appl. Math. Model. 28(10), 891–910 (2004). doi:10.1016/j.apm.2004.03.001

    Article  MATH  Google Scholar 

  20. Dubey, A.K., Yadava, V.: Laser beam machining: a review. Int. J. Mach. Tool. Manu. 48(6), 609–628 (2008). doi:10.1016/j.ijmachtools.2007.10.017

    Article  Google Scholar 

  21. Parandoush, P., Hossain, A.: A review of modeling and simulation of laser beam machining. Int. J. Mach. Tool. Manu. 85, 135–145 (2014). doi:10.1016/j.ijmachtools.2014.05.008

    Article  Google Scholar 

  22. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012). doi:10.1515/jnum-2012-0013

    MathSciNet  MATH  Google Scholar 

  23. Logg, A., Mardal, K.A., Wells, G.: Automated Solution of Differential Equations by the Finite Element Method, Lecture Notes in Computational Science and Engineering, vol. 84. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  24. Gaston, D., Newman, C., Hansen, G., Lebrun-Grandi, D.: MOOSE: a parallel computational framework for coupled systems of nonlinear equations. Nucl. Eng. Des. 239(10), 1768–1778 (2009). doi:10.1016/j.nucengdes.2009.05.021

    Article  Google Scholar 

  25. Strickland, M.A., Arsene, C.T.C., Pal, S., Laz, P.J., Taylor, M.: A multi-platform comparison of efficient probabilistic methods in the prediction of total knee replacement mechanics. Comput. Method. Biomech. 13(6), 701–709 (2010). doi:10.1080/10255840903476463

    Article  Google Scholar 

  26. Roith, B., Troll, A., Rieg, F.: Integrated finite element analysis (FEA) in three-dimensional computer aided design programs (CAD)—overview and comparison. In: Bocquet J.C. (ed.) Proceedings of ICED 2007, the 17th international conference on engineering design, pp. 1–12. The Design Society (2007)

  27. Pietro, P.D., Yao, Y.L.: A numerical investigation into cutting front mobility in \({\rm CO}_2\) laser cutting. Int. J. Mach. Tool. Manu. 35(5), 673–688 (1995). doi:10.1016/0890-6955(95)93037-7

    Article  Google Scholar 

  28. Aloke, R., Girish, V., Scrutton, R.F., Molian, P.A.: A model for prediction of dimensional tolerances of laser cut holes in mild steel thin plates. Int. J. Mach. Tool. Manu. 37(8), 1069–1078 (1997). doi:10.1016/S0890-6955(96)00090-9

    Article  Google Scholar 

  29. Moreno, A., Segura, A., Arregui, H., Posada, J., Ruíz de Infante, A., Canto, N.: Using 2d contours to model metal sheets in industrial machining processes. In: De Amicis R. , Conti G. (eds.) Future Vision and Trends on Shapes, Geometry and Algebra. Springer Proceedings in Mathematics Statistics, vol. 84, pp. 135–149. Springer, London (2014)

  30. Ali, Y., Zhang, L.: Relativistic heat conduction. Int. J. Heat Mass Transf. 48(12), 2397–2406 (2005). doi:10.1016/j.ijheatmasstransfer.2005.02.003

    Article  MATH  Google Scholar 

  31. Jiang, H.J., Dai, H.L.: Effect of laser processing on three dimensional thermodynamic analysis for HSLA rectangular steel plates. Int. J. Heat Mass Transf. 82, 98–108 (2015). doi:10.1016/j.ijheatmasstransfer.2014.11.003

    Article  Google Scholar 

  32. Boffy, H., Baietto, M.C., Sainsot, P., Lubrecht, A.A.: Detailed modelling of a moving heat source using multigrid methods. Tribol. Int. 46(1), 279–287 (2012). doi:10.1016/j.triboint.2011.06.011

    Article  Google Scholar 

Download references

Acknowledgments

This research has been funded by the CAD CAM CAE Research Group and the College of Engineering at Universidad EAFIT, Colombia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aitor Moreno.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mejia, D., Moreno, A., Ruiz-Salguero, O. et al. Appraisal of open software for finite element simulation of 2D metal sheet laser cut. Int J Interact Des Manuf 11, 547–558 (2017). https://doi.org/10.1007/s12008-016-0308-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-016-0308-5

Keywords