Taking account of information maturity in assessing product risk

Abstract

We focus on the product development process based on virtual prototyping, which allows earlier evaluation of product performance. Uncertainty in information and in the behavioural models used by designers may introduce the risk of under- or over- achieving the product requirements. Two aspects of uncertainty are considered: uncertainty in information content, such as a design parameter that is characterised by a tolerance (\(10\pm 2\,\hbox {mm}\)) and in the behavioural models used to assess the proposed design. Maturity is defined as uncertainty in the context of the design parameters and behavioural models that may evolve in the course of the design process, such as a dimension that has not been fixed and a simplified model that needs to be refined. Risk assessment typically accounts for the content uncertainty (variability) but not the maturity of design information. We propose a method for enriching risk assessment taking into account the maturity of information in risk assessment.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Ullman David, G.: Toward the ideal mechanical engineering design support system. Res. Eng. Des. 13, 55–64 (2002)

    Google Scholar 

  2. 2.

    Humphrey, W.: Managing the software process. Addison-Wesley Professional, Massachusetts (1989). (ISBN 0-201-18095-2)

    Google Scholar 

  3. 3.

    Coppendale, J.: Manage risk in product and process development and avoid unpleasant surprises. Eng. Manag. J. 5(1), 35–38 (1995)

    Article  Google Scholar 

  4. 4.

    A Guide to the Project Management Body of Knowledge (PMBOK\(\textregistered \) Guide), Chapter 11. Project Management Institute (2004)

  5. 5.

    Yannou, B., Limayem, F.: La méthode SPEC : Suivi de Performances en cours de Conception. IDMME, Montréal (2000)

    Google Scholar 

  6. 6.

    Kumamoto, H., Henley, E.J.: Probabilistic risk assessment and management for engineers and scientists. IEEE Press, Piscataway (1996)

    Google Scholar 

  7. 7.

    Goh, Y.M., Booker, J.D., McMahon, C.A.: A framework for the handling of uncertainty in engineering knowledge management to aid product development. In: Proceedings of ICED 05: 15th International Conference on Engineering Design, Engineers Australia. Melbourne, Australia (2005)

  8. 8.

    Suh, N.P.: Axiomatic design: advances and applications. The Oxford series on advanced manufacturing. Oxford University Press, New York (2001)

    Google Scholar 

  9. 9.

    Grebici, K., Goh, Y.M., McMahon, C.A.: Uncertainty and risk reduction in engineering design embodiment processes. In: Proceedings of DESIGN 2008, 10th International Design Conference. Dubrovnik, Croatia (2008)

  10. 10.

    Eversheim, W., Roggatz, A., Zimmermann, H.-J., Derichs, T.: Information management for concurrent engineering. Eur. J. Oper. Res. 100(2), 253–265 (1997)

    Article  MATH  Google Scholar 

  11. 11.

    Barton R.R., Limayen F., Meckesheimer M., Yannou B.: Using metamodels for modelling propagation of design uncertainties. In: Proceedings of ICE’99, 1999, pp. 521–528. The Hague, Netherlands (1999)

  12. 12.

    Zimmermann, H.-J.: Fuzzy set theory and its applications, Chapter 9. Kluwer Academic Publishers, Boston (1991)

    Google Scholar 

  13. 13.

    Zio, E., Apostolakis, G.E.: Two methods for the structured assessment of model uncertainty by experts in performance assessments of radioactive waste repositories. Reliab. Eng. Syst. Saf. 54, 225–241 (1996)

    Article  Google Scholar 

  14. 14.

    Zimmermann, H.-J.: An application-oriented view of modeling uncertainty. Eur. J. Oper. Res. 122, 190–198 (2000)

    Article  MATH  Google Scholar 

  15. 15.

    Moore, R.E.: Interval analysis. Prentice-Hall, New Jersey (1966)

    Google Scholar 

  16. 16.

    Antonsson, E.K., Otto, K.N.: Imprecision in engineering design. J. Mech. Des. 117, 25–32 (1995)

  17. 17.

    Sentz K., Ferson S.: Combination of evidence in dempster-shafer theory. Sandia Report (2002)

  18. 18.

    Ferson, S., Donald, S.: Probability bounds analysis. In: International Conference on Probabilistic Safety Assessment and Management (PSAM4), pp. 1203–1208. Springer, New York (1998)

  19. 19.

    Norme X50 117, Management de projet, gestion du risque, management des risques d’un projet. AFNOR (2003)

  20. 20.

    Tassinari, R.: Pratique de l’analyse fonctionelle. Dunod, Paris (1992)

    Google Scholar 

  21. 21.

    Ullman, D.G.: The mechanical design process, 3rd edn. McGraw-Hill, New York (2003)

    Google Scholar 

  22. 22.

    Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering design, a systematic approach, 3rd edn. Springer, New York (2007)

    Google Scholar 

  23. 23.

    Norton, R.L.: Machine design: an integrated approach. Prentice hall, New Jersey (2000)

    Google Scholar 

  24. 24.

    Booker, J.D., Truman, C.E., Wittig, S., Mohammed, Z.A.: A comparison of shrink-fit holding torque using probabilistic, micro-mechanical and experimental approaches. Proc. IMechE Part B J Eng Manuf. 218, 175–187 (2004)

    Article  Google Scholar 

  25. 25.

    Goh, Y.M.: The incorporation of uncertainty into engineering knowledge management. PhD Thesis, Department of Mechanical Engineering, University of Bristol (2005)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guilain Cabannes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cabannes, G., Goh, Y.M., Troussier, N. et al. Taking account of information maturity in assessing product risk. Int J Interact Des Manuf 8, 243–253 (2014). https://doi.org/10.1007/s12008-014-0228-1

Download citation

Keywords

  • Variability
  • Maturity
  • Information
  • Risk assessment
  • Product performance