Skip to main content
Log in

Off-line view planning for the inspection of mechanical parts

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

3D optical scanning systems are used more and more for quality control purposes. The effective utilization of such systems needs an efficient virtual planning of the product acquisition viewpoints. Literature shows how 3D CAD product models can be used as reference in order to manage the verification process and as a basis for the computation of the optimal viewpoints. However, in the mechanical field, a variety of inspection tasks is experienced by engineers involved in the quality control process: GD&T verification, production phases control such as sheet metal cutting, evaluation of aesthetic appearance of parts, global shape deformation measurement and specific point deviations assessment. This leads to the necessity of flexible view planning approaches which adapt to the specificity of the required inspection task. The present work targets the development of a comprehensive view planning approach in which several algorithmic options are triggered by the product features to be inspected. Algorithms have been implemented in a prototypal software system which has been experimented as an off-line application to provide inputs to a multi-axis degree of freedom robot arm mounting an optical 3D scanner. Two test cases from die casting and automotive fields are presented. They show the computation of acquisition poses in a suitable sequence and efficiency in the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geometric Dimensioning and Tolerances GD&T standards, ASME Y14.5 (2009)

  2. Stößel, D., Hanheide, M., Sagerer, G., Krüger, L., Ellenrieder, M.: Feature and viewpoint selection for industrial car assembly. In: Springer lecture notes on computer science 3175, proceedings of 26th DAGM symposium, pp. 528–535 (2004)

  3. Shi Q., Xi N., Spagnuolo C.: A feedback design to a CAD-guided area sensor planning system for automated 3D shape inspection. Comput. Aided Des. Appli. 4(1–4), 209–218 (2007)

    Google Scholar 

  4. Germani, M., Mengoni, M., Raffaeli, R.: Automation of 3D view acquisition for geometric tolerances verification. In: Proceedings of the 2009 3-D digital imaging and modeling workshop, Kyoto, Japan (2009). doi:10.1109/ICCVW.2009.5457489

  5. Lin Y.J., Mahabaleshwarkar R., Massina E.: CAD-based CMM dimensional inspection path planning—a generic algorithm. Robotica 19(2), 137–148 (2001). doi:10.1017/S0263574700003076

    Article  Google Scholar 

  6. Li Y., Gu P.: Free-form surface inspection techniques state of the art review. Comput. Aided Des. 36(13), 1395–1417 (2004). doi:10.1016/j.cad.2004.02.009

    Article  Google Scholar 

  7. Li Y., Gu P.: Automatic localization and comparison for free-form surface inspection. J. Manufact. Syst. 25(4), 251–268 (2006)

    Article  Google Scholar 

  8. Gao J., Gindy N., Chen X.: An automated GD&T inspection system based on non-contact 3D digitization. Int. J. Product. Res. 44(1), 117–134 (2006). doi:10.1080/09638280500219737

    Article  Google Scholar 

  9. Connolly, C.I.: The determination of next best views. In: Proceedings of IEEE international conference on robotics and automation, pp. 432–435 (1985). doi:10.1109/ROBOT.1985.1087372

  10. Banta J., Wong L., Dumont C., Abidi M.: A Next-Best-View system for autonomous 3-D object reconstruction. IEEE Transact. Syst. Man Cybernet. 3(5), 589–598 (2000). doi:10.1109/3468.867866

    Article  Google Scholar 

  11. Scott W.R., Roth G., Rivest J-F.: View planning for automated three-dimensional object reconstruction and inspection. ACM Comput. Surv. (CSUR) 35(1), 64–96 (2005). doi:10.1145/641865.641868

    Article  Google Scholar 

  12. Impoco, G., Cignoni, P., Scopigno, R.: A six-degrees-of-freedom planning algorithm for the acquisition of complex surfaces. Int. J. Shape Model. (2005) doi:10.1142/S0218654305000700

  13. Charyar M.S., Thiebaut F., Lartigue C.: Scan planning strategy for a general digitized surface. J. Comput. Inf. Sci. Eng. 6(4), 331–340 (2006)

    Article  Google Scholar 

  14. Scott, W.R., Roth, G., Rivest, J-F.: View planning with a registration constraint. In: Proceedings of third international conference on 3-D digital imaging and modeling, pp. 127–134 (2001). doi:10.1109/IM.2001.924419

  15. Torabi, L., Kazemi, M., Gupta, K.: Configuration space based efficient view planning and exploration with occupancy grids. In: Proceedings of the 2007 IEEE/RSJ international conference on intelligent robots and systems (2007). doi:10.1109/IROS.2007.4399451

  16. Blaer, P.S., Allen, P.K.: Data acquisition and view planning for 3-D modeling tasks. In: International conference on intelligent robots and systems, pp. 417–422 (2007). doi:10.1109/IROS.2007.4399581

  17. Loriot B., Seulin R., Gorria P.: Non-model based method for an automation of 3D acquisition and post-processing. Electron. Lett. Comput. Vision Image Anal. 7(3), 67–82 (2008)

    Google Scholar 

  18. Tarbox G.H., Gottschlich S.N.: Planning for complete sensor coverage in inspection. Comput. Vision Image Underst. 61(1), 84–111 (1995). doi:10.1006/cviu.1995.1007

    Article  Google Scholar 

  19. Trucco E., Umasuthan M., Wallace A.M., Roberto A.M.: Model-based planning of optimal sensor placements for inspection. IEEE Trans. RA 13(2), 182–194 (1997). doi:10.1109/70.563641

    Google Scholar 

  20. Cowan C.K., Kovesi P.D.: Automatic sensor placement from vision task requirements. IEEE Trans. PAMI 10(3), 407–416 (1998). doi:10.1109/34.3905

    Article  Google Scholar 

  21. Xi F., Shu C.: CAD-based path planning for 3-D line laser scanning. Comput. Aided Des. 31, 474–479 (1999)

    Article  Google Scholar 

  22. Prieto F., Lepage R., Boulanger P., Redarce T.: A CAD-based 3D data acquisition strategy for inspection. Mach. Vision Applic. 15, 76–91 (2003). doi:10.1007/s00138-003-0131-4

    Article  Google Scholar 

  23. Rodrigues Martins F.A., Garcia-Bermejo J.G., Zalama Casanova E., Peran Gonzales J.R.: Automated 3D surface scanning based on CAD model. Mechatronics 15(7), 837–857 (2005). doi:10.1016/j.mechatronics.2005.01.004

    Article  Google Scholar 

  24. Ellenrieder M.M., Komoto H.: Model-based automatic calculation and evaluation of camera positions for industrial machine vision. Proc. SPIE Int. Soc. Opt. Eng. 5674(48), 467–478 (2005). doi:10.1117/12.585427

    Article  Google Scholar 

  25. Derigent W., Chapotot E., Ris G., Remy S., Bernard A.: 3D digitizing strategy planning approach based on a CAD model. J. Comput. Inf. Sci. Eng. 7(1), 10–20 (2007). doi:10.1115/1.2410023

    Article  Google Scholar 

  26. Germani M., Mandorli F., Mengoni M., Raffaeli R.: CAD-based environment to bridge the gap between product design and tolerance control. Precis. Eng. 34, 7–15 (2010). doi:10.1016/j.precisioneng.2008.10.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Raffaeli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raffaeli, R., Mengoni, M., Germani, M. et al. Off-line view planning for the inspection of mechanical parts. Int J Interact Des Manuf 7, 1–12 (2013). https://doi.org/10.1007/s12008-012-0160-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-012-0160-1

Keywords

Navigation